
- 1 -

Quality Assurance Tradeoff Analysis Method (QATAM)
An Empirical Quality Assurance Planning and Evaluation Framework

Stefan Biffla Christian Dengerb Frank Elberzhagerb Dietmar Winklera

aTU Wien, Institute of Software Technology and Interactive Systems
bFraunhofer Institute of Experimental Software Engineering (IESE)

ABSTRACT
The selection and design of quality assurance (QA) methods for
software development projects a) involves tradeoffs that are not
always made explicit and b) the impacts of the selection decisions
on project success and risks may be not well understood. Similar
to SEI’s ATAM analysis technique for software architecture qual-
ity and risk evaluation, this paper introduces the ideas for
QATAM, a technique for the evaluation of QA strategies and
their tradeoffs in the context of a software process. In a frame-
work process to define and evaluate software engineering and QA
strategies, QATAM draws on approaches to elicit stakeholder
value propositions and risks, to operationalize the most important
value propositions (quality requirements) in scenarios, and to rate
the potential of QA approaches to identify and mitigate relevant
project risks. We illustrate the application of QATAM in an ongo-
ing research project LifeCycleQM, which aims at improving evi-
dence-based application of QA activities in SMEs.

Categories and Subject Descriptors
D.2.8 Software Engineering Metrics; D.2.9 Management Software
Quality Assurance.

General Terms
Management, Experimentation, Measurement.

Keywords
Quality Assurance, evidence-based method selection, focusing
empirical study planning, measurement planning.

1. INTRODUCTION
The quality of software development depends on sufficiently
understanding the effects of software engineering approaches and
quality assurance (QA) activities on product and project charac-
teristics. Many empirical reports address the effects of the appli-
cation of single methods in an empirical context; in real life deci-
sion makers need to assess and compare the overall effects of QA
method combinations and the tradeoffs between involved QA
activities. For example, directing resources towards methods that
can effectively address some key risks in the project may be more
beneficial than using general-purpose QA methods (see [1] and
[12] for an overview). On the other hand, concentrating resources
on a few risk items [13][14] may leave other risks unchecked that
need at least to be observed (i.e., measured) in the course of the
project.

A goal of the research project LifeCycleQM [5] [6] is to support
project managers and quality managers in small- and medium-
sized enterprises (SMEs) in selecting, based on empirical evi-
dence, QA approaches that effectively and efficiently help fulfill-
ing desired quality goals and thus reduce project risks. Part of this
ongoing work is the development of QATAM, similar to the
ATAM approach [10] in software architecture evaluation and
modeling. The purpose of QATAM is to assess the likely conse-
quences of QA planning decisions in software projects based on
empirical evidence.
This paper introduces the QATAM ideas and concepts, motivates
expected benefits from applying the concept in research exam-
ples, and discusses issues that need further research work. Similar
to ATAM, the steps in the QATAM framework elicit stakeholder
win conditions (goals) and concrete scenarios to define project
benefits and risks; identify risks that should be measured and/or
mitigated with QA activities; find and evaluate the likely effects
of QA activities (and their tradeoffs) in the project context using
evaluation models that can range from informal to formal quanti-
tative models and typically involve a range of empirical evidence.
The remainder of this paper is structured as follows: Section 2
summarizes the ATAM approach for scenario-based tradeoff
elicitation and analysis; Section 3 introduces the steps in the
QATAM concept; Section 4 provides examples that illustrate the
approach and raise issues for further investigation; Section 5 con-
cludes expected contributions of the approach.

2. QUALITY ANALYSIS WITH ATAM
The Architecture Tradeoff Analysis Method (ATAM) [10] is
based on the notion that software architecture design involves
tradeoffs, which are not always made explicit, and the impacts of
design decisions may not be well understood. ATAM is a sce-
nario-based and model-based analysis technique to analyze soft-
ware architectures (with respect to multiple quality attributes) and
explicitly consider design tradeoffs. The method aims at illumi-
nating risks in the architecture through the identification of attrib-
ute trends early in the software development lifecycle.

Kazman et al. [10] list 9 ATAM process steps: The initial step 0
(planning/information exchange) includes a brief method presen-
tation for all stakeholders and an initial overview of the proposed
architecture, main quality goals, and an initial set of scenarios.
The ATAM process starts at step 1 (scenario brainstorming). Key
stakeholders collect important system scenarios, system defects
and anticipated changes of the system. Scenarios operationalize
software quality attributes in a project context, elicit context pa-

Quality Assurance Tradeoff Analysis Method (QATAM)

- 2 -

rameters, and performance measures; i.e. how can an attribute be
measured, how much performance is enough, and how do charac-
teristics of the architecture affect the observable manifestation.
An observation from applying the method is that a focus on opti-
mizing quality attributes in isolation may compromise the suffi-
cient fulfillment of other, also important, quality attributes. These
identified scenarios are mapped to a detailed architectural presen-
tation in step 2 (architectural presentation) to achieve scenario
coverage with all important attributes of the related scenario. This
scenario coverage checking (step 3) is based on a set of quality
attributes related to the application domain, performed by the key
stakeholders. Step 4 focuses on scenario grouping and prioritiza-
tion regarding individual stakeholder roles and requirements. The
software architect maps high-quality attributes of the selected
high-priority scenarios (step 5) to the architectural implementa-
tion to see their realization within the architectural design and the
design impact on the quality attributes; how is the response of the
architecture to scenarios on e.g., system performance or security.
Based on these findings, the analyst identifies sensitive scenarios
and attributes in a quality attribute-specific analysis. Based on a
model regarding every quality attribute, e.g., performance issues,
and small modifications of input variables, sensitivity points (step
6) are identified. Clusters of sensitivity points are the basis for
trade-off identification (step 7) for individual requirements and
scenarios. Finally, step 8 summarizes the findings derived from
the analysis phases to find architectural improvements and action
plans. ATAM aims at providing a repeatable and transitionable
risk mitigation method to find architecture problems and potential
stakeholder conflicts early in the system lifecycle.

3. INITIAL QATAM FRAMEWORK
Similar to the well-established ATAM process we propose an
initial framework for planning and evaluating QA activities.
QATAM aims at supporting project and quality managers in plan-
ning appropriate QA activities along the software life-cycle. De-
pending on the application domain, well-defined methods and
tools can support engineers in constructing high-quality software
products. Nevertheless, it depends strongly on the project context
to select a suitable set of methods to provide the stage for achiev-
ing high-quality software products. The initial QATAM frame-
work consists of a sequence of steps similar to ATAM steps:
 Step 0 (planning/information exchange) establishes a com-

mon view on the project for all stakeholders taking part in
the workshop. An important success factor in this step is to
gather sufficient information for a clear picture of the project
scope, context, and constraints.

 Step 1 (scenario brainstorming) identifies stakeholder win
conditions, most important scenarios and measures for suc-
cess criteria, i.e., "when is a product good enough from a
quality point of view". EasyWinWin, a well-proven group-
ware supported approach, can be used for eliciting and pri-
oritizing stakeholder win conditions [8] [9].

 Step 2 focuses on the initial selection of candidate QA activi-
ties and a basic set of quality measures. What QA activities
are appropriate for investigating the products under the given
context constraints? What level of quality is necessary to
pass the initial quality gate? An example for a decision sup-
port framework for software inspection planning using em-
pirical inspection knowledge can be found in [2], another

framework example for planning QA techniques (i.e., inspec-
tion and testing) is described in [5].

 Step 3 and step 4 are similar to ATAM and cover (a) a sce-
nario coverage checking procedure to focus on the most im-
portant business cases first and (b) a prioritization and group-
ing of scenarios, e.g., using techniques from the RiskIt proc-
ess [11]; a range of project and quality complexity drivers
can be found in CoCoMo II [3] and CoQualMo [4].

 An important difference between ATAM and QATAM is:
ATAM evaluates product variants, while QATAM evaluates
process/project variants, which needs to be reflected in the
methods and evaluation results. In contrast to ATAM step 5,
the QATAM process focuses on different variants of QA
method sets, e.g., combinations of inspection and testing
[1] [12], different inspection reading technique variants with
focus on defect types that were identified as important in us-
age scenarios. Method application knowledge can be derived
from literature suggestions, experts, local (e.g., company)
experience, and empirical studies.

 Step 6 (sensitivity point analysis) includes the comparison of
different QA method set variants for determining their im-
pact on important product quality attributes and measures.
Depending on the available experience this may involve pro-
totyping steps or empirical models such as CoQualMo.

 Step 7 determines trade-offs between important quality at-
tributes when variants of QA method sets are used in the de-
velopment scenarios.

 Step 8 summarizes candidates for most promising method
sets and defines a detailed action plan. This action plan is
based on the sensitivity point analysis and measures in the
individual project context.

QATAM provides a decision framework for traceable and repeat-
able best-practice method planning and evaluation along the soft-
ware process life-cycle. The expected benefits of QATAM come
from support for project and quality managers regarding (a) defect
detection for product cleanup, (b) product quality estimation ap-
proaches based on measurements and metrics (e.g., defect estima-
tion), (c) exit criteria for strategic project decisions if defined
goals at quality gates fail (e.g., demonstration laying the system-
atical foundation for some relevant future software capability with
respect to functionality, performance, quality; contribution to
project win conditions, etc.), and (d) elicitation of risk indicators,
e.g., failure to demonstrate planned systematical achievement of
future software capability. Finally, QATAM contributes to QA
method improvement by providing systematic plans for measur-
ing empirical data in real-world projects and well-defined con-
texts.

4. QATAM EXAMPLE APPLICATIONS
This section provides preliminary QATAM application examples
(see also the Appendix). We basically distinguish between quali-
tative and quantitative methods for the evaluation of QA strate-
gies in a given context, depending on the availability of local
and/or general empirical data. Figure 1 depicts a snapshot from
QATAM step 5, where workshop participants qualitatively rated
the candidate methods in risks elicited from workshop scenarios.
Unclear requirements, a high number of defects found during a
review cycle, and new team members were identified as crucial
for project success. Candidate software engineering and QA
methods (e.g., software processes, analytical QA activities, and

Quality Assurance Tradeoff Analysis Method (QATAM)

- 3 -

constructive software engineering activities) might help to miti-
gate these risks. Note, that an increasing number of “+” indicates
a more suitable method to mitigate a risk (positive effect), while
an increasing number of “-” describes a negative impact on risks.
The evaluation of the techniques, e.g., “++” and “--”, were based
on the experience of the experts in the QATAM workshop.

Po
ss

ib
le

 R
is

ks

Number of defects
found during a review

Unclear requirements

Software Processes

Ag
ile

 S
E

Pr
oc

es
se

s

Tr
ad

iti
on

al
S

E
 P

ro
ce

ss
es

New Team Members

Analytical QA
activities

In
sp

ec
tio

n

Te
st

in
g

R
ev

ie
w

s

Constructive
SE activities

Pa
ir

Pr
og

ra
m

m
in

g

Te
st

-D
riv

en

D
ev

el
op

m
en

t

++ - n/a n/a n/a ++ +

n/a n/a + ++ + ++ +

- + + ++ - ++ +

Candidate SE / QA methods

Figure 1: Cut from a Risk – QA method candidate matrix.

For example, agile software processes have better potential to
deal with unclear requirements better than waterfall processes.
Software inspection was found to be a well suited approach for
defect detection in early software products, even if requirements
are unclear. Furthermore, software inspection is applicable as a
learning framework for new team members. Also pair program-
ming supports introducing new team member to an existing soft-
ware development team. Summarizing the matrix in Figure 1, a
combination of agile software processes, pair programming and
an inspection approach might be an appropriate set of methods to
reduce risks in the depicted situation.
Beside the qualitative evaluation it is also possible to support the
trade-off analysis with empirical findings either gathered in a
local context or initially from literature. For example, in case
requirements defects are perceived as a high project risk, inspec-
tions proved to be an efficient means on detecting and removing
these types of defects. However, there are many different variants
on how to perform inspections, e.g., with or without a meeting,
using checklists or scenario-based reading techniques, assigning
different foci or the same foci to reviewers or involving more or
less developers as reviewers. These are trade-off points of a single
technique that need to be considered when defining the right
strategy to resolve the project risk. For example, not performing a
meeting reduces the overall time needed for an inspection but it
also reduces the effect of team-learning. A quality manager must
consider these trade-offs with respect to his or her goals – empiri-
cal data from literature can be used as a starting point for such
quantitative analyses. However, in order to implement a sophisti-
cated QA strategy it is important to measure and analyze data on
the variation of defect detection effectiveness after the decisions
are implemented. Furthermore, it is important to reason which QA
activities really found certain types of defects in the project and
which QA activities should have found these defects according to
the QA project plan. An approach to fulfill such a measurement
goal is described in [7]

5. CONCLUSION
We presented the ideas and concepts of a currently developed
approach, QATAM, a framework for supporting quality managers
and project leaders in defining and evaluating QA strategies in a
certain development context. The framework takes well-working
ideas from ATAM and provides a means to reason about potential
implementations of QA and software engineering strategies based
on the benefits, risks, and costs related to these strategies.
QATAM supports in early development stages the evaluation of
potential benefits and risks of a range of software engineering and
QA strategies (combination of software engineering and QA
methods). The expected contributions of this approach are: 1.
Repeatable scenario-based evaluation of capabilities of bundles of
QA techniques (instead of single techniques in isolation) and
tradeoffs between these techniques in a project context. 2. Docu-
ment context parameters, rationale for QA method selection to
enable measurement of relevant QA performance parameters
within the project. 3. Use of best-available empirical evidence
(local and/or from research literature) for QA method selection.
Furthermore, applying QATAM will provide support in identify-
ing gaps in empirical evidence that can drive local empirical data
collection and help focus empirical research efforts.
Currently, researcher groups at TU Wien and the Fraunhofer In-
stitute for Experimental Software Engineering in Kaiserslautern
work jointly on the refinement of the QATAM approach and its
application in the context of the research project LifeCycle QM
funded by the BMBF grant 01 IS E05 D.

REFERENCES
[1] Aurum, A.; H. Petersson, C. Wohlin. State-of-the-Art: Soft-

ware Inspections Turning 25 Years. Journal on Software
Testing, Verification and Reliability, 12(3):133–154, 2002.

[2] Biffl S., Halling M. (2003) "Managing Software Inspection
Knowledge for Decision Support of Inspection Planning", in
"Managing Software Engineering Knowledge" edited by A.
Aurum, R. Jeffery, C. Wohlin, M. Handzic, Springer Verlag.

[3] Boehm B.W., E. Horowitz, R. Madachy, D. Reifer, B. K.
Clark, B. Steece, A. W. Brown, S. Chulani, and C. Abts.
Software Cost Estimation with Cocomo II. Prentice Hall,
2000.

[4] Chulani S. COQUALMO (COnstructive QUALity MOdel)
—a software defect density prediction model. In Proceed-
ings of the ESCOM — SCOPE’99, pages 297–306, 1999.

[5] Denger C., Elberzhager F.; Basic Concepts to Define a Cus-
tomized Quality Assurance Strategy; IESE Report No.
013.07/E (Project LifeCycleQM); February 2007.

[6] Denger, C.; F. Elberzhager. A Comprehensive Framework
for Customizing Quality Assurance Techniques, Report of
WP 3.1 in the LifeCycleQM project, Report Number IESE-
118.06/E, 2006.

[7] Freimut B., Denger C., Ketterer M. “An Industrial Case
Study of Implementing and Validating Defect Classification
for Process Improvement and Quality Management” 11th In-
ternational Software Metrics Symposium. Metrics 2005 -
Proceedings (2005)

[8] Grünbacher P., “Collaborative Requirements Negotiation
with EasyWinWin”, 11th International Workshop on Data-

Quality Assurance Tradeoff Analysis Method (QATAM)

- 4 -

base and Expert Systems Applications, IEEE, London, 2000,
pp. 954 - 960.

[9] Grünbacher P., Halling M., Biffl S., Kitapci H., Boehm B.
W.(2004) "Integrating Collaborative Processes and Quality
Assurance Techniques: An Example from Requirements Ne-
gotiation", Journal of Management Information Systems
(JMIS), 20 (4): 9-30.

[10] Kazman R., Barbacci M., Klein M., Carriere S. J., Woods S.
G., Experiences with Performing Architecture Tradeoff
Analysis, Proc. ICSE 1999

[11] Kontio J., The Riskit Method for Software Risk Manage-
ment, version 1.00, 1996. Computer Science TechnicalRe-
ports. Univ. of Maryland. College park, MD.

[12] Laitenberger O, DeBaud J-M (2000) An encompassing life
cycle centric survey of software inspection. J Syst Softw
50(1):5–3

[13] Rus, I., Halling, M., Biffl S. (2003) "Supporting Decision-
Making in Software Engineering with Process Simulation
and Empirical Studies", Int. Jour. of Software Engineering
and Knowledge Engineering (IJSEKE), 13 (5): 531-545.

[14] Winkler D., Varvaroi R., Goluch G., Biffl S.: An Empirical
Study On Integrating Analytical Quality Assurance Into Pair
Programming, Proc. ISESE06, Rio de Janeiro, Brazil, 2006.

Appendix
The following Figure A1 and Table A1 illustrate the strengths of candidate SE and QA activities in different parts of the software lifecycle.
Figure A2 shows a QA strategy planning process for SMEs that embeds QATAM for evaluating bundles of QA strategies [6].

Design Implement. Integrations
Test OperationRequirements

Decision Gates

Project Execution

Key Stakeholders

Management (Top Mgmt, Project, Quality)

Analyst
Customer

Architekt
Designer

Programmer
Tester

Tester
Customer

Customer
Maint. Eng.

Quality Assurance Engineer

Commitment Agreement Design Frozen Implementation
completed

Integrated &
Tested

Inspection
Design Inspection Code Inspection

Testing Test Case Specification Module Test Integration Test Acceptance Test

Pair Programming Concurrent Implementation / implicit Quality Assurance

Integrated Pair
Programming

Concurrent Implementation / Explicit Quality Assurance

Use Cases Use Cases

State Charts State Chart Diagram
Fig. A1: Decision gates in the software life-cycle and phases when candidate methods can be applied.

Tab. A1: Decision gates in the software life-cycle and phases when candidate methods can be applied.

Method Focus Process step
Inspection
 Design Inspection
 Code Inspection

Requirements /Design
Software Code

Early in the Life-Cycle
Implementation Phase

Testing
 Specification (Requirements)
 Module Tests
 Integration Test
 Acceptance Test Exec.

Requirements /Design
Code
Composition of Modules
Testing

Early in the Life-Cycle
Implementation Phase
Integration Phase
Integration Phase / Operation

Pair Programming Design / Implementation Design/Implementation/Integration

Quality Assurance Tradeoff Analysis Method (QATAM)

- 5 -

Integrated Pair Prog. Reqs/Design/Impl/Test Full Life-Cycle Process
Use Cases Requirements Requirements Phase

Organization wide
goals

1. Determine Influence Factors

4. Select most fitting QA-Strategy

3. Evaluation of QA-Strategy

2. Determine QA-Strategy

Specific Influence
Factors

Risks of certain
Quality Strategy

Effects of certain
Quality Strategy

Goals achieved by
certain Quality

Strategy

Selected certain
Quality StrategyReuse Information

Framework
Heuristics

Guidelines on
QATAM

Guidelines in
Using Framework
Influence Factors

Framework
Heuristics /
Technique

Characteristics

Reuse Information

Quality
Strategy(1..n)

Project Context
(cost, time, etc.)

Variation Factors

Variation Factors

5. Fine-tuning of QA-Techniques

6. Measure & Analyze Effects of QA
Techniques

Implemented
Quality Technique

Fig. A2: Exemplar overall planning process for developing a quality assurance strategy, developed in the LifeCycleQM project [6].

