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Abstract—In Cyber-Physical Production System (CPPS) en-
gineering, domain experts want to trace requirements from
production processes to engineering artifacts on a detailed level
to efficiently reuse Industry 4.0 Assets that automate production
processes. However, the knowledge on processes and assets is
often scattered on engineering artifacts and domain experts,
making it hard to trace multi-disciplinary requirements. In this
paper, we investigate requirements tracing for reusing robot
cells, building on the domain analysis of 80 robot cell types. To
integrate production process and asset knowledge, we introduce
Industry 4.0 Asset based Requirements Tracing (I4ART), a trace-
ability information model and process, providing linked Industry
4.0 Assets for defining requirements trace links from production
processes to software-relevant assets for reuse. We evaluate the
I4ART approach with data from real-world use cases (i) by
instantiating an I4ART knowledge graph, (ii) by estimating the
effort for eliciting and validating trace links on different levels
of detail, and (iii) by validating the findings with domain experts
at four CPPS engineering companies. In the study, the effort
for trace link elicitation was found reasonable and the I4ART
knowledge graph efficient for accessing tracing knowledge.

Index Terms—Industry 4.0, Trace Links, Tracing effort, Cber-
Physical System, Knowledge Graph.

I. INTRODUCTION

Requirements tracing [1], [2] has been successfully used
to address safety-critical aspects in designing and validating
software-intensive systems [3], e.g., cars and power plants, but
mainly to pass certification rather than to support engineering,
often due to cost-benefit questions [4], [5]. In this paper,
we investigate the cost-benefit of requirements tracing for
the reuse of production systems that automate processes to
produce car parts [6], [7]. A key question is the viability of
requirements tracing on a level of detail to validate software
elements of a reusable production system, such as a robot cell
to automate joining processes in car manufacturing [8].

Modern industrial production processes, e.g., for assembling
cars, are automated by production systems [6], [9], [10].
The Industry 4.0 (I40) vision aims at providing adaptive and
reusable production systems based on flexible and adaptable
solution designs [6], [11]. Cyber-Physical Production Systems
(CPPSs) represent a recent production system architecture
paradigm [9] based on self-contained, interacting, and hierar-
chically structured system components [6], so-called 140 com-
ponents. An 140 component, like a work cell for positioning

and joining car parts, is a software-intensive system, composed
of 140 Assets. These systems can describe their capabilities,
called skills [12], and adapt their behavior according to their
context. For instance, this is needed for adjusting production
resources to changing product designs or to balance the
workload between production processes in a work line [6].

An 140 Asset is a product, process, or production resource
with a set of skills and a standardized digital representation,
the so-called 140 Asset Administration Shell (AAS) [13]. For
configuring an 140 Asset, e.g., a robot in a work cell, it
is necessary to provide the asset with sufficient context on
the production system and on process requirements. The
coordination of several 140 Assets, e.g., two robots in a work
cell (cf. Section IV), requires efficient orchestration [14]-[16].

Designing adaptive CPPSs with 140 Assets considerably
increases the complexity of system design requirements in
comparison to traditional production systems [17]. CPPSs
produce a variety of highly-customizable products that require
numerous, ideally reusable [18], types of production processes,
system components, and solution design elements. Hence, a
key success factor is keeping an overview of the requirements
in multi-disciplinary CPPS engineering [17] on a sufficient
level of detail. This requires the capability to trace system
requirements that require multi-disciplinary design solutions
to software requirements and solutions that determine CPPS
behavior. However, the following challenges [6], [17] impede
effective and efficient requirements tracing [2], [19], [20].

Challenge 1. Scattered and incomplete representation of
domain knowledge for requirements tracing. CPPS design
knowledge comes from (i) several departments, potentially in
different companies, (ii) heterogeneous engineering artifacts of
several disciplines, like mechanical and electrical engineering,
and (iii) implicit domain expert knowledge. Usually, this
knowledge involves high-level requirements, like product de-
sign and business processes, and low-level requirements, like
the robot motion speed. In addition, the knowledge concerns
requirements dependencies like the motion speed required to
achieve the planned production cycle time.

The scattered engineering knowledge makes it hard to elicit
and maintain Trace Links (TLs) [4] that represent knowledge
on requirements definition and fulfillment as a foundation
for automating reuse in CPPS engineering. However, the



140 transformation from rigid production systems to adaptive
CPPS requires more detailed tracing of multi-disciplinary
requirements on a suitable level of abstraction.

Challenge 2. Volatile system requirements. Changes to prod-
uct design, e.g., to a car part, have an impact on production
process and resource requirements and design candidates [8].
However, it is difficult to represent the requirements space of
changing process variants and product designs towards a CPPS
to select and validate solution candidates for reuse [21].

Advances in the digitalization of CPPS engineering [6] will
make TL data available in better quality and more efficiently,
e.g., employing the AutomationML meta-model and exchange
format, as integrated models [22], [23]. Describing a tradi-
tional asset as an 140 Assets with its digital representation [13]
seems promising for integrating engineering views on the
asset, but it remains unclear how to use 140 Assets and skills
for requirements tracing to facilitate reuse.

In this paper, we aim at formalizing and eliciting knowl-
edge on requirements trace links to facilitate solution design
reuse and to improve shortcomings on requirement trace link
definition and elicitation in CPPS engineering, using Design
Science [24], [25]. We build on a domain analysis of 80 robot
cell types with 27 robot types that assemble 6 car types in
several hundred variants, which may change during CPPS
design and operation. We describe the representative use case
Mounting Dashboard to Car Body (cf. Section IV) to illustrate
requirements and reusable CPPS design elements. We analyze
differences between traditional and CPPS designs and needs
for requirements tracing to reuse solution designs, leading to
the following research questions (RQs).

We investigate RQ1 what model supports requirements
tracing in multi-disciplinary multi-model CPPS engineering.
Building on and extending approaches from knowledge in-
tegration and requirements tracing [2], [26], we introduce a
Traceability Information Model, the Industry 4.0 Asset based
Requirements Tracing (I4ART) network, compatible to the 140
AAS, to formalize and integrate the knowledge needed to trace
requirements to 140 Assets for reusing CPPS solution designs.

We investigate RQ2 what traceability process engineers can
follow to efficiently elicit requirements trace links to 140 Assets
in CPPS Engineering. We describe I4ART traceability process
steps for eliciting a technical 140 Asset network as a basis for
efficiently eliciting and validating requirements traces.

To investigate the viability of our approach, we report
on conducting the [4ART process with tool support, a dia-
gram/model editor and a graph database, to efficiently design
and validate the I4ART network. We estimate the effort for
trace link elicitation (i) for samples of robot cell types in car
assembly of several levels of complexity and (ii) for different
levels of TL detail. We evaluate with seven senior domain ex-
perts at four production systems engineering companies their
needs for requirements tracing for CPPS reuse tasks and the
expected cost-benefit of the I4ART approach in comparison to
their typical approaches to requirements tracing.

The remainder of this work is structured as follows: Sec-
tion II summarizes related work. Section III motivates the

research questions and approach. Section IV introduces the
use case Mounting Dashboard to Car Body and identifies
criteria for requirements tracing to facilitate reuse in CPPS
engineering. Section V introduces the Industry 4.0 Asset based
Requirements Tracing Information Model and the traceability
process [2]. Section VI reports on a feasibility study with
an [4ART network instance, on estimating the effort for TL
elicitation, and the validation of the research results with
domain experts. Section VII discusses the research results and
limitations. Section VIII concludes and outlines future work.

II. RELATED WORK

This section summarizes related work on CPPS engineering,
CPPS knowledge management, and requirements tracing.

A. CPPS Engineering Background

Automotive CPPSs, an important class of software-intensive
systems [10], typically consist of more than 50,000 system
elements. The reference architecture for 140 (RAMI4.0) [9],
[10] categorizes these elements in six levels including work
lines and work cells. A typical automotive CPPS has about 200
to 300 work cells for positioning and joining car parts [27],
containing automation components with embedded systems.

CPPS engineering typically involves 10 to 30 engineer-
ing domains, including mechanics, electrics, and software
engineering, from several departments and companies [17].
Each domain has different views on the CPPS, and 10 to
50 engineering tools, leading to many, often partial, local
views [28], [29]. Hence, engineering tasks can benefit from
multi-disciplinary requirements tracing on a suitable level of
abstraction. In particular, product design changes, e.g., to car
parts, require changes in the design and operation phases [7].

Recent research is addressing an increased reuse of engi-
neering artifacts [30]. In the automotive industry, reuse mainly
focuses on engineering artifacts related to work cells and
their contained function groups [8], [31]-[33]. Examples are
standardized welding cells with standardized welding robots
and geo-stations or standardized function groups in assembly
lines, like screwing robots. Each reuse case is based on pro-
duction system knowledge on resource capabilities to execute
processes based on relevant materials. These are capabilities
to fulfill product and production process requirements, like
position reachability for welding or screwing quality, and
economic and legal requirements, like throughput and safety.

Reusing process and resource designs aims at reducing
engineering and maintenance effort and cost. Yet, the division
of CPPS engineering among many departments and companies
with local system design decisions often leads to unnecessary
design variety [34]. In this paper, we aim to model process and
resource requirements in sufficient detail to facilitate process
and system element identification for reuse within and across
projects [35]. The foundations for this reuse are reference
architectures and their use to define a system architecture
enabling the integration of the artifacts to be reused [36]-[38].



B. Knowledge management in CPPS engineering

CPPS engineering knowledge is based on the core CPPS as-
sets: products, processes, and resources, i.e., Product-Process-
Resource (PPR) knowledge [12]. Engineering models rep-
resent objects and dependencies that reflect these PPR as-
pects [39], [40]. Yet, this knowledge is scattered over multi-
disciplinary multi-model artifacts with various dependen-
cies [41]. The dependency knowledge is implicit knowledge of
domain experts on production processes and work cells [42].

T40 digitalization aims at more effective engineering by
employing knowledge integration and reuse across engineering
disciplines and projects [43]. 140 Assets are valuable ob-
jects [13], representing PPR concepts and production recipes
etc. [6], [10]. The I40 AAS [13] is the formal digital rep-
resentation of an I40 Asset utilizing object-related system
modeling [44]. The 140 AAS can represent 140 Assets and in-
tegrate the knowledge coming from several discipline-specific
property views. The interdisciplinary nature of /40 Assets that
carry multi-model data and documentation combined with
their AAS [13] goes far beyond the typical representation
of software-intensive systems, like embedded systems. To the
best of our knowledge, 140 Assets have been used to collect
engineering data, but not for tracing CPPS requirements.

The emerging skill concept further supports multi-
disciplinary CPPS knowledge integration. Pfrommer et al. [12]
define skills as the ability of resources to perform a process,
and a production skill as the demands towards resources [45].
Meixner et al. [21] describe how skills can abstract resource
capabilities from process demands. In this paper, we build
on skills as essential requirements aggregation to represent
production process demands towards resources [8], [21].

Data extraction and integration requires data exchange and
integration formats, e.g., AutomationML, which facilitates the
elicitation of technical interfaces and dependencies between
140 Assets, and provides data logistics capabilities [46], [47].

The 140 AAS [13], skills [12], and AutomationML [22]
aim at better knowledge integration by making knowledge
from engineering artifacts easier to interpret for humans and
computers. In this paper, we build on the 140 Assets to
formalize CPPS engineering knowledge, skills as aggregation
for process requirements, and AutomationML to describe
technical interfaces and dependencies between 140 Assets.
These contributions provide a basis for bi-directional, non-
acyclic knowledge graphs [48] for requirements tracing in
CPPS engineering.

C. Requirements tracing in Systems Engineering

There is a mature tradition on tracing requirements [1], [2],
[49] for increasingly large, heterogeneous, and flexible systems
of systems, in application domains such as smart energy,
smart city, and CPPS engineering [3], [28], [29], [49], [50].
Fundamental challenges in requirements tracing [4], [5], [19],
[51] concern methods and tools [3], [52]—-[54] for the effective
and efficient elicitation of Trace Links (TLs) [50], [S5]-[57] in
sufficient quality from heterogeneous artifacts in engineering
practice [26]. Wohlrab [49] points out that engineers are not

likely to use applications that suffer from inconsistent TLs. In
the engineering of multi-disciplinary, heterogeneous CPPSs,
there are many kinds of technical links and dependencies
that are candidates for tracing but are scattered on multiple
models [26]. In this paper, we build on Traceability Infor-
mation Model and Process concepts [2], [26] to provide an
integrated model for facilitating the elicitation and validation
of requirements traces in multi-disciplinary CPPS engineering.

The goal for a selected task with a required level of detail for
tracing is to elicit a set of TLs from engineering artifacts, with
minimal, reasonable effort [19], [S8]-[60]. While requirements
tracing is mandatory for regulated safety-critical systems as-
pects, for non-regulated applications, important questions are
(i) what level of tracing granularity is sufficient and achiev-
able [19]; (ii) what is the expected tracing effort; and (iii) how
to make tracing affordable for practical purposes. These issues
have not been sufficiently explored in CPPS engineering.
Therefore, we focus in this paper on cost estimation for tracing
in a CPPS engineering use case on different levels of detail.

Multi-disciplinary CPPS engineering can benefit from col-
laborative requirements tracing [20], [61] approaches. In
CPPS engineering, work groups with heterogeneous models
require boundary objects [49] to bridge requirements tracing
gaps, to provide context and to overcome issues from implicit
domain knowledge. In this paper, we investigate the potential
of 140 Assets and their AAS to provide boundary objects that
enable integrating several engineering views.

III. RESEARCH QUESTIONS AND APPROACH

To investigate requirements tracing in CPPS engineering, we
followed the Design Science approach [24], [25]. To under-
stand and explore the environment and business needs, we first
(i) reviewed literature on CPPS engineering and requirements
tracing (cf. Section II) and (ii) conducted a domain analysis
from a process improvement project (cf. Section IV) at the
large car manufacturing Company A. From this analysis, we
elicited (i) the use case Mounting Dashboard to Car Body
to illustrate reuse in CPPS engineering (see Section IV), (ii)
shortcomings in typical CPPS engineering, see Challenges 1
and 2 in Section I, impeding requirements tracing for reuse,
and (iii) criteria for requirements tracing capabilities as a
foundation for reuse (see Section IV).

RQ1. Traceability Information Model. What model sup-
ports requirements tracing from system to software require-
ments in multi-disciplinary multi-model production systems
engineering? To address RQ1, we build on the insights
and knowledge acquired in the domain analysis. Leveraging
the data integration capabilities (a) of the 140 AAS [13] to
integrate engineering views on the asset, (b) of technical links
between 140 Assets to represent trace data for a network, and
(c) of skills to represent requirements of products and pro-
cesses for CPPS capabilities, we design the 140 Asset network
and knowledge graph [48] and the I4ART Information Model
(cf. Section V) for Industry 4.0 Asset based Requirements
Tracing. We illustrate the design and analyze trace link types



with examples from the use case Mounting Dashboard to Car
Body (cf. Section IV, Figure 2) for reusing robot cells.

RQ2. Traceability Process. What traceability process can
engineers follow to efficiently elicit requirements trace links
to 140 Assets in CPPS Engineering? To address RQ2, we
design the I4ART process for efficient elicitation of sufficiently
detailed requirements trace links from heterogeneous engineer-
ing data sources to instantiate the I[4ART information model
coming from RQI (cf. Section V-B). We apply the I4ART
process to design a network instance for the use case Mounting
Dashboard to Car Body (cf. Sections IV and VI) with example
data from typical CPPS engineering artifacts to explore the
viability of I4ART. For samples of robot cell types on several
levels of complexity, coming from the domain analysis data
set, we estimate the effort for trace link elicitation.

We discuss the I4ART information model and traceability
process results with domain experts. We do this to understand
their needs for improving reuse capabilities in CPPS engi-
neering with requirements tracing and to compare the I4ART
model and method results with their typical approaches for
providing requirements traceability.

This paper provides the following contributions to the RE
community: (i) insights on CPPS domain concepts and tracing
issues; (ii) knowledge elements for requirements tracing to
bring scattered knowledge together in multi-model engineering
as a basis for facilitating reuse tasks; and (iii) the I4ART
network containing knowledge elements to collect engineering
artifacts, requirements trace link types and instances for use
as training data to facilitate automating trace link elicitation.

IV. ILLUSTRATIVE USE CASE FOR EVALUATION

This section introduces the illustrative use case Mounting
Dashboard to Car Body, and derives criteria for improving
requirements tracing for reuse in CPPS engineering.

The authors of this paper conducted an in-depth domain
analysis in the context of a process improvement project with
applied researchers at Company A, a large automotive CPPS
engineering company. The analysis results were published
on the required knowledge for requirements tracing, such
as skills, and gaps in artifact exchange [8], [21], [27]. The
analysis was conducted for six months in workshops with 10
domain experts from 5 domains. We investigated designs of
200 types of positioning and joining processes [62] with 80
robot cell types and 27 robot types. These cells screw several
hundreds of parts on a car body with up to 1,800 screwing
points for the assembly of 6 car types with hundreds of
configurations [8], [27]. These robot cell types can be simple
cells, with one screwing robot, or complex cells, with two
robots for coordinated positioning and screwing (cf. Figure 1).

This use case is representative for positioning and joining
processes with car parts and the required robot cells. The
use case consists of two main process steps: (1) position the
dashboard and screw it onto the car body; (2) fasten the screw
and measure the joint. The result is the dashboard mounted
to the car body. The requirements for the automation of this
process are surprisingly complex due to (i) the variety of

dashboards and car bodies and (ii) the integration of other
processes in the work line, e.g., for reacting to timing or
quality issues in previous production steps [8], [21].

Figure 1 (blue elements) shows, for a particular work cell
with two robots, an overview of the products, production
processes, skills, and production system elements and associ-
ated engineering artifacts, which hold detailed information on
the system elements. The system elements range from main
CPPS resources down to the software elements that control
the robot cell’s behavior. Further, Figure 1 (orange boxes)
shows selected requirements (cf. Sections V-A and VI): high-
level business requirements, production process requirements,
derived multi-disciplinary skills and main CPPS resource
requirements, and a chain of derived single-discipline resource
requirements down to software elements. Together, these re-
quirements allow validating the automation of the robot cell
behavior and the engineering project’s progress.

Reuse task. For requirements tracing in CPPS engineering,
we focus on a reuse task that can benefit from tracing business
and system requirements to software element solutions, repre-
sented as 140 Assets. A typical goal is to reuse the design of a
screwing process automated by a robot cell with adaptations at
stations with similar requirements, e.g., designed by different
departments. The design includes the product, process, system
and software elements, the engineering artifacts, and the
derived requirements. We illustrate tracing requirements for
reusing (i) the production process Fasten Screw and Measure
and (ii) the system and software design for coordinating the
two robots in the work cell (cf. Figure 1).

From product designs and customer requirements, the Func-
tional Planner derives the requirements for the production
process and the associated Skill, e.g., Requirement FP23,
which represents the parameters to produce all car type
variants on the work line that contains the work cell. These
skill requirements are input (i) to identify solution design
candidates for the robot cell and (ii) to define requirements for
the robot cell subsystems, e.g., the robots and screwdrivers,
and the industrial PC that orchestrates the behavior of the
robots according to (i) the type of car to which the dashboard
should be mounted and (ii) production information on previous
production steps coming from 140 Assets in other work cells.

Figure 1 illustrates requirements chains starting at original
business requirements and leading to derived multi-discipline
and single-discipline requirements as a foundation for the
validation of software requirements in the overall system
context. Based on the requirements coming from the skill,
the Functional Planner and the Mechanical Engineer select
and derive multi-disciplinary requirements for the work cell’s
main resources, i.e., the IPC, robots, and screwdrivers. The
Mechanical Engineer derives and addresses mechanical re-
quirements, and hands down the device chain of a main CPPS
resource, e.g., Screwdriver-Drive-Transformer-Controller, his
design results to the Electrical Engineer and the Software
Engineer, who derive and address the requirements for their
disciplines and propagate their design results to construction.

Software requirements depend on multi-disciplinary system
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Fig. 1. Overview on selected requirements, assets, and engineering artifacts for the use case Mounting Dashboard to Car Body; for production process steps
(tag A) automated by robot cell (tag C), a CPPS that is composed of 140 Assets; based on [63], in SysML and adapted VDI 3682 notations [21], [64].

requirements that have to be split into single-discipline require-
ments for the mechanical, electrical, and software engineer
to work on. Further, software engineers have to adapt their
requirements to the design decisions coming as engineering ar-
tifacts from mechanical and electrical engineers. For instance,
the chain of requirements and associated 140 Assets starting
at the Electric Screwdriver, leading to the Screwer Controller,
with the software artifact Screwer Program in Figure 1.

The industrial PC (IPC) is linked via a communication
network to the robots in the work cell. Derived from the multi-
disciplinary system requirements to the IPC, there are software
requirements for the PLC that controls the IPC and the high-
level robot behavior as defined in detail in the engineering
artifacts 140 Orchestration Program and Business Workflow
Coordination. In robot-based placing and mounting, the robot
motion paths require different designs and coordination, de-
pending on the involved variants and status of car body,
dashboard, and selected 140 components. During virtual com-
missioning, the Simulation and Quality Engineer validates the
robot cell behavior against the work cell’s system requirements
and the derived requirements for each engineering discipline.

Shortcomings in typical CPPS engineering. Trace links
are important for reuse, but are hard to collect efficiently

in CPPS engineering. Unfortunately, several shortcomings
in requirements tracing hamper reuse in CPPS engineering.
Requirements tracing along the chains of derived requirements
can be very useful for the early validation of the require-
ments for software to control the behavior of the robot cell
regarding their reuse in similar contexts. Yet, in typical CPPS
engineering, derived single-discipline requirements are often
not explicitly represented but remain in the discipline-specific
information silos. They only come implicitly with sharing
system elements among engineers, e.g., software engineer have
to rely on their expertise to infer requirements from given
design elements, risking to overlook or misinterpret implicit
requirements leading to unplanned cost or project delay. In
general, requirements may be traced to engineering artifacts
containing data on many 140 Assets, but traces to individual
140 Assets nor across engineering disciplines are not available.

Traceability strategy. Reuse of work cells in manufacturing
systems, including software elements, demands capabilities for
tracing multi-disciplinary requirements on the level of system
elements, 140 Assets, in CPPS engineering: 1) Tracing on a
suitable level of abstraction, i.e., to 140 Asset concepts, not
just to heterogeneous engineering artifacts that concern many
140 Assets. 2) Tracing CPPS requirements, which concern



automating a variety of products and production processes,
to skills for reusable CPPS elements. 3) Tracing from multi-
disciplinary requirements to single-discipline requirements,
e.g., software requirements that determine CPPS behavior.

Criteria for Requirements Tracing. From the domain
analysis, we derive the following criteria for requirements
tracing as a basis to improve reuse tasks in CPPS engineering.

R1. Trace Links in I40 Asset Network. Trace Links
link product, process, skill, and resource assets to form an
140 Asset Network as foundation for tracing the technical
relationships from product-transforming production processes
to resources that automate the process.

R2. Trace Links in Requirements Network. Trace Links
link original and derived multi-/single-discipline requirements
to form a requirements network as foundation for tracing
original system requirements to detailed discipline-specific
component requirements.

R3. Trace Links from Requirement to 140 Asset. Trace
Links link requirements to 140 Assets that define or address
the requirements as a foundation for requirements’ validation.

R4. Trace Links from 140 Asset/Requirement to Engi-
neering Artifact. Trace Links link an 140 Asset or a Require-
ment to Engineering Artifacts that describe and/or use the 140
Asset or implement the requirement, e.g., design documents,
validation reports, as foundation for tracing evidence on the
rationale to 140 Asset design.

RS5. Efficient elicitation of high-value trace links. Trace
Link elicitation from engineering models, artifacts, and human
expertise considers the cost-benefit of trace links to elicit and
ensure sufficient quality of trace links that form the basis
for correct and sufficiently complete trace link applications
in engineering, e.g., reuse of work cells, for improving the
business value coming from requirements tracing.

V. TRACEABILITY INFORMATION MODEL AND PROCESS

This section describes the [4ART information model and
the traceability process [2] to facilitate the reuse of production
processes and work CPPS cells.

A. 140 Asset based Requirements Tracing Information Model

To address RQ1, this sub-section introduces the Traceability
Information Model [2] for the I4ART network, illustrated with
example data from the use case Mounting Dashboard to Car
Body (cf. Section 1V, Figure 1). Figure 2 shows the I4ART
Information Model, the meta model of the [4ART network (in
UML notation), based on the general Traceability Information
Model for heterogeneous system engineering in [26].

Trace Artifact Types. A trace artifact is a Requirement,
an 140 Asset, or an Engineering Artifact. A trace artifact has
a unique identifier, a name and properties, building on the
140 Asset Administration Shell design [13] to facilitate the
integration of multi-disciplinary engineering data for tracing.
Therefore, the properties of an 140 Asset, such as an Electric
Screwdriver (cf. tag C1 in Figure 1), can contain a mechanical
view with the mechanical ID and the maximal torque and an
electrical view with the electrical ID and the maximal current.

is-a is-part-of
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is-part-of
source outgoing outgoing  source
. 1 * . * 1 Engineering
Requirement 1 " Trace Link " 1 Artifact

target incoming incoming  target

Fig. 2. Requirement, 140 Asset, Engineering Artifact, and Trace Link meta
model, based on [27], in SysML notation.

A Requirement is an original or derived, multi- or single-
discipline requirement (cf. boxes in orange color in Figure 1).
An 140 Asset [13] is a product, process, resource [12], or
skill [21] (cf. the elements in blue color in Figure 1). A
Resource is a CPPS element (cf. tag C in Figure 1).

A Skill [21] connects a production process to resources
that automate this process (cf. tag B in Figure 1). In this
connection, the skill represents the requirements of production
process variants, e.g., screwing with a torque range and max-
imum duration for particular car types, to enable the selection
of a set of suitable main CPPS resources.

An Engineering Artifact can be a document, model, or
database, such as a contract, a CAD plan, or a set of require-
ments (cf. tag D in Figure 1).

A Requirement and an 140 Asset can be part of a hierarchical
structure, e.g., have sub-elements to represent different levels
of detail, e.g., a robot cell and devices in the cell. An I40 Asset
can be part of a type hierarchy, e.g., specific robot types as
sub-types of a general robot type to allow defining different
properties for sub-types.

Trace Link Types. A Trace Link connects exactly one
trace artifact with exactly one other trace artifact (cf. the link
types in Figure 1). Table I lists example trace links, shown
in Figure 1, to illustrate the trace link types and sub-types to
address the criteria R1 to R4 introduced in Section IV.

The trace artifacts and links form the following networks.

1. 140 Asset Network. The 140 Assets linked with
discipline-specific technical links, i.e., interfaces and depen-
dencies coming from all involved engineering disciplines
(trace link types 140 Asset - 140 Asset; 140 Asset - Process -
Skill, Skill - 140 Asset - Resource; sub-types functional,
technical; product-process, process-resource). This network
defines neighborhoods in the 140 Asset Network, e.g., all sub-
components of a main CPPS resource or the assets that a
software element depends on. Therefore, an 140 Asset is a
boundary object between several disciplines and an entry point
to the 140 Asset Network. Further, domain expert knowledge
such as new dependency links between 140 Assets may be
added as TLs to the 140 Asset Network.

2. Requirements Network. The chains of requirements
from original business requirements to derived multi-discipline
and derived single-discipline requirements (trace link types
Requirement-Requirement, sub-types Contains and Trace.



ID|Source Artifact Target Artifact Trace link type Sub-type
1 [Req Busi 22 Prod/Proc Req FP23 Reg-Req Contains
2 |Process Fasten Screw [Prod/Proc Req FP23 140 Asset-Req Satisfy

and Measure
Prod/Proc Req FP23  |Func/Prod Req FP23 Reg-Req
Car Body w/Dashboard|Process Screw & Measure |(l40 Asset - 140 Asset

w

Trace

IS

Product - Process

5|Process Fasten Screw |Skill FP23 140 Asset-Process-Skill  [Process - Resource|
and Measure

6 |Skill FP23 IPC Skill-140 Asset-Resource |Process - Resource|

7 (IPC PLC 140 Asset - 140 Asset Functional

8|PLC Comm. Protocol Config. [l140 Asset - Eng.Artif. Trace

9 |Drive Drive 140 Asset - 140 Asset Technical

TABLE I
TRACE LINK TYPE EXAMPLES (CF. FIGURE 1), BASED ON [26].

3. Requirements-Assets Network. 140 Assets linked to
requirements that define them (trace link types 140 Asset -
Requirement; sub-type trace). 140 Assets, such as screwing
application, skill, or Screwer Controller (see tags A, B, C2 in
Figure 1), are linked to or indicate associated requirements.

4.  Assets-and-Requirements-to-Artifacts  Network.
140 Assets and/or requirements linked to the engineering
artifacts that define or implement them. (trace link types
140 Asset - Engineering Artifact, Requirement - Engineering
Artifact; sub-types satisfy, trace).

Together, these networks address criteria R1 to R4 (cf.
Section IV) leading to a reusable structure and content types,
illustrated in Figure 1, for similar production processes and
work cells. The links between the Requirements Network
and the 140 Asset Network enable navigating between these
networks coming from any starting requirement or 140 Asset.

B. 140 Asset based Requirements Tracing Process

To address RQ2, this section introduces the I4ART process
for trace link definition, elicitation, and application. The role
tracing engineer can conduct the following steps iteratively.

Step 1: Design 140 Asset Network Instance. To prepare
a domain concept network as foundation for requirements
tracing, the tracing engineer elicits in the scope of reuse, in
the use case a process for positioning and screwing, the 140
Assets and technical links, i.e., interfaces coming from models
and artifacts in multiple CPPS engineering disciplines.

In the use case context, product and process asset and link
data (see tag A in Figure 1) was available in the Bill of
Materials and Bill of Operations. Resource asset and link data
came from the Bill of Resources; all kinds of data came in the
form of spreadsheets and engineering tool export data [23].

Skills [21] are a recent type of 140 Asset (see tag B in Fig-
ure 1) to represent requirements of processes for capabilities
of main CPPS resources (see tag C/ in Figure 1). Skills can be
instantiated from technical links between a process and main
CPPS resources, coming from functional engineering results.

Domain experts add can their implicit knowledge on depen-
dencies between 140 Assets, building on the rich data foun-
dation of the 140 Asset Network that integrates the currently
scattered knowledge on an 140 Asset and its dependencies.

Step 2: Refine Requirements and elicit Trace Links.
Based on the 140 Asset Network coming from Step 1, and the

list of requirements in the scope of reuse, the tracing engineer
(2a) refines requirements for the 140 Assets in the network
(see tags A, B, C1, C2 in Figure 1) from original high-level
business requirements to skills to main CPPS resources, then
following the device chain between main CPPS resources to
software elements; and (2b) elicits trace links between 140
Assets and requirements (mostly manual); and (2c) elicits TLs
between [40 Assets and engineering artifacts (semi-automated,
depending on artifact data quality) (see tag D in Figure 1).

Step 3: Validate and apply Trace Links to Reuse Task.
Based on the 140 Asset Network with requirements TLs (cf.
Step 2), and the list of requirements in the scope of reuse,
the tracing engineer (3a) runs queries to explore production
process assets in the reuse scope and their 140 Asset neigh-
borhood; (3b) reasons on the knowledge graph to recommend
new or flag TLs for inspection; (3c) visually inspects results
graphs for validating TLs; and (3d) adds or improves TLs for
their task-specific use.

We applied this traceability process to investigate the
feasibility of the approach that addresses criterion RS (cf.
Section IV) for reuse tasks in CPPS engineering.

VI. FEASIBILITY STUDY AND TRACING EFFORT

To evaluate our research (cf. Section V), this section reports
on (i) a feasibility study instantiating an I4ART network to
explore querying capabilities to automate reuse tasks; (ii) the
estimation of the number of trace artifacts/links for typical
robot cells and the effort to elicit and validate these trace links
at several levels of detail from typical data sources; and (iii)
the comparison of the I4ART approach with alternative tracing
approaches in practice in workshops with domain experts.

Feasibility study. Two authors of this paper conducted
the I4ART process steps (cf. Section V-B) for a production
process and a work cell with two robots, selected from a
sample of robot cells, resulting in a [4ART knowledge graph
of 126 trace artifacts and 182 trace links. The graph database
provided sufficient capabilities to browse and query the 140
Asset network instance as foundation for verifying traces and
for automating requirements tracing and reuse tasks.

The required information is likely to be available in typ-
ical CPPS engineering projects and can be aggregated as a
sequence of data transformations from spreadsheet tables and
engineering tool exports to the I4ART network, in this case a
Neo4J' graph database and a custom diagram/model editor for
trace link design, visualization, validation, and improvement.

Estimation of tracing effort. Tracing effort depends on the
number of Trace Links (TLs) and the average effort for eliciting
and validating a TL, which depends on data source quality
and the method used for TL elicitation. The number of TLs
depends on the number of trace artifacts, which depends on the
complexity of the robot cells and the level of detail for tracing
(to main CPPS resources or to detailed software elements, cf.
tags CI, C2 in Figure 1). In the following, we discuss data
collection and analysis for tracing effort estimation.

Thttps://neodj.com/



Data sample. Two authors of this paper analyzed the
number of trace artifacts at Company A based on samples of
screwing processes with 3 to 5 robot cell types for simple,
medium, and complex types of cells (cf. Tables II and III),
selected from the 80 types in the domain analysis, which
represent a typical range of robot cell capabilities in automo-
tive manufacturing. Common characteristics of the robot cells
are the function to position and join car parts, their technical
architecture, and their overall structure (cf. Figure 1).

Robot cell complexity levels (simple/medium/complex)
mainly differ in the number of screwing applications (1/2/3),
the number of robots (1/1/2), the components for synchroniz-
ing the joining process, and the robot sensors and tools for
joining, varying the number of trace artifacts and links.

Number of Trace Artifacts. For the process and robot cell
sample, Table II shows the minimum, average, and maximum
numbers of trace artifacts by type: 140 Assets, requirements,
and engineering artifacts (cf. Section V). Note that the number
of requirements in Table II assumes bundling for each 140
Asset the detailed requirements for parameters, i.e., 5 to 10
parameters for a screwing application of a Process/Skill and
up to 5 parameters for a CPPS Resource.

Asset type#min/avg/max|Req. type #min/avg/max Eng.Art. Type#min/avg/ma

Product  4/6/8 |Original | 6/12/20 |Document 15/20/26

Process 2/2.5/4 Derived 14/24/45 |Spreadsheet [ 3/3/5

skill 2/2.5/4 |Multi-disc.  8/14/27 |Model " 3/5/6

Resource 12/22/38 |Single-disc. 12/22/38 |Program 4/6/8

Sum 20/33/50 |Sum 20/36/65 |Sum 25/34/45
TABLE II

OVERVIEW ON TRACE ARTIFACT TYPES AND NUMBER OF INSTANCES
IN THE SAMPLE OF ROBOT CELLS FOR JOINING (CF. FIGURE 1).

In the study, the number of requirements grew considerably
from original business requirements to derived requirements
for assets within a robot cell (derived requirements, cf. tags C1,
C2 in Figure 1) to guide engineers in the various disciplines
(by deriving multi-discipline into single-discipline require-
ments). Further, there were Engineering Artifact documents,
mainly data sheets, spreadsheets specifying trace artifacts and
their parameters, models relating trace artifact aspects, and
programs to define the behavior of the robot cell elements.

Trace Link Type #min/avg/max Factors to Trace Artifacts
Reg-Req 20/42/80  1.0to 1.5 * # Requirements
Reg-Asset 20/32/70 1.0to 1.5 * # Assets
Reg-Eng.Artif. 30/43/60 1.0 to 3.0 * # Eng.Artif.s
Asset-Asset 25/41/60 1.0to 1.5 * # Assets
Asset-Eng.Artif. 15/38/80 1.0to 3.0 * # Assets
Eng.Artif.-Eng.A. 2/6/10 0.1to0 0.3 * # Eng.Artif.s
sum 110/205/360

TABLE III

OVERVIEW ON TRACE LINK TYPES AND NUMBER OF INSTANCES
IN THE SAMPLE OF ROBOT CELLS FOR JOINING (CF. FIGURE 1).

Number of Trace Links. Table III shows an overview on
the minimal, average, and maximal numbers of trace links
by type in the data sample, for tracing original and derived

requirements to 140 Assets (incl. software elements) and to
Engineering Artifacts. Further, Table III shows the main driver
for the number of trace links for each link type and the range
of factors to estimate the number of trace links for a type.

We investigated tracing on different levels of detail: low
level of detail, i.e., original requirements to Engineering Arti-
facts resulted in (12/23/40) TLs; medium level of detail, i.e.,
original requirements to main CPPS resources to Engineering
Artifacts resulted in (30/54/80) TLs; and high level of detail
(cf. Table III), resulted in (110/205/360) TLs.

The number of requirements and TLs largely depended on
the complexity of the robot cell and the level of detail of
tracing. The number of trace links can be considerable, up to
360 TLs, when tracing from production processes (screwing
applications) to software elements for a complex robot cell.

Tracing Effort. We calculate the basic effort for tracing as
the number of trace links times the average effort for eliciting
a trace link. To estimate the average effort per trace link
elicitation, we collected data on the effort to extract a sample
of trace links as input to estimate the effort for requirements
tracing for a production process and robot cell. (cf. Table III).
In the study, the data source quality allowed eliciting assets
and original requirements with tool support, while skills and
derived requirements typically came from domain experts.

In the study (cf. Table III), we measured and estimated the
effort for Trace Link (TL) elicitation as the sum of effort for
the tasks (a) preparation and import of data from spreadsheets,
structured documents (1-3 work hours (wh)), (b) manual
tracing from documents and models (3-5 minutes per TL; or
20-30 minutes per group of TLs that can be imported together),
(c) validation by a domain expert in the I4ART graph (2-3
wh), and (d) correction of 10% to 20% TLs (2-3 wh). In
the study context, the overall tracing effort per robot cell
amounted to 11 to 32 work hours, depending on the level of
tracing detail (cf. tags CI, C2 in Figure 1), production process
to main CPPS resources or software elements (cf. Tables II
and III). Therefore, tracing at a high level of detail will benefit
from advanced methods for automation/recommendation of
TLs requiring good data source quality for eliciting TLs.

While the level of tracing effort per robot cell estimated
in the feasibility study seems reasonable to high as extra
engineering work for one work cell, the extra effort could be
significantly reduced by efficiently collecting requirements and
trace links as part of engineering tasks. Further, the structure
of robots cells is stable over variants and versions. Therefore,
domain experts could describe requirements and trace links
efficiently building on a pre-filled structure of requirements
and TLs (cf. the requirements and TLs in Figure 1 and Tables I
and III) that they adapt to a specific robot cell during design.

Validation with domain experts. To gain insight on the
benefits of the I4ART approach in CPPS engineering practice,
we discussed the I4ART approach in workshops with seven
senior domain experts, representing expertise on the roles
functional planner, detail planner, quality manager, and reuse
manager, at four CPPS engineering companies [27].

Reuse tasks. Regarding the reuse of production processes



and robot cells, around 42% of the domain experts reported
CPPS engineering in different departments and companies,
leading to high variety of technical solutions and issues
during CPPS ramp-up and maintenance. Systematic reuse with
requirements tracing could reduce risks of late design changes,
overly long duration of CPPS validation, and maintenance cost
due to high variety of solution technologies and quality levels.

Tracing requirements. Tracing is currently required for
safety-critical aspects (70%) and sometimes conducted for
product quality requirements to test scenarios (28%). Tracing
is promising in areas where product design changes may re-
quire significant production process and CPPS design changes.

Traditional tracing approaches. The respondents reported
tracing approaches in two categories. (1) Requirements-to-
Engineering Artifacts (70%). Requirements are represented in
a requirements document as elements that are traced to engi-
neering artifacts and, sometimes, their parts. (2) Requirements-
to-CPPS-elements (42%). Requirements are represented in a
requirements database as elements that can be traced to main
CPPS resources and to engineering artifacts and their parts.

However, all respondents reported major gaps in tracing
regarding (a) products and production processes to CPPS
resources (skill gap) and (b) main CPPS resources to software
elements (software gap), making it hard to assess the impact
of process changes on the CPPS design and vice versa.

Target capabilities and effort for tracing. Most respondents
(85%) would consider Industry 4.0 Asset based Requirements
Tracings (I4ARTs) based on a cost-benefit argument, if the
expected benefit of tracing would significantly outweigh the
cost of tracing in work hours, in line with the findings by
Wohlrab et al. [20]. For example, reducing validation duration
and effort could provide a benefit of 100 work hours for
a work line with 10 robot cells. In this simple calculation,
tracing would make sense, if sufficiently detailed tracing would
cost less than 10 work hours per cell. This target seems
achievable with good quality data sources and the automation
of trace link elicitation for robot cells with similar structure
and requirements, e.g., in automotive manufacturing.

The respondents found the I4ART knowledge graph efficient
for accessing tracing knowledge, such as the requirements
chain from a production process to the software elements that
control the behavior of the CPPS that automates the process.

VII. DISCUSSION

This section discusses results for the research questions.

RQ1. Traceability Information Model (TIM). What model
supports requirements tracing from system to software require-
ments in multi-disciplinary multi-model production systems
engineering? To address RQI1, Section V-A introduced the
Industry 4.0 Asset based Requirements Tracing (I4ART) In-
formation Model with a minimal set of trace link types to link
requirements and 140 Assets for validating the requirements
of software elements that control and coordinate the behavior
of a production process. The I4ART Information Model lifts
140 Assets from engineering artifacts to a knowledge graph
that facilitates describing the design chain for tracing between

production process and software elements to automate reuse
tasks. Based on the I4ART Information Model, we instantiated
a knowledge graph in a graph database to explore tracing
business requirements of production processes via skills to
CPPS software elements in a “formal 140 Asset network.

These research results build on [2], [19] and go beyond
the state of the art in requirements tracing [26] by modeling
in the Traceability Information Model (TIM) (i) 140 Assets
as trace artifacts that facilitate integrating engineering views
based on the 140 AAS [13]; (ii) a network of technical links
between 140 Assets as foundation for requirements tracing; and
(iii) skills [21] as trace artifacts to represent the requirements
of variants of a production process for several types of
products to bundle and validate requirements coming from a
variety of products to be produced on a work line.

RQ2. Traceability Process. What traceability process can
engineers follow to efficiently elicit requirements trace links
to 140 Assets in CPPS Engineering? To address RQ2, Sec-
tion V-B introduced the [4ART process for efficient elicitation
of requirements and trace links from heterogeneous CPPS
engineering artifacts. The I4ART process first elicits a network
of 140 Assets linked by technical links coming from multi-
discipline models to design a knowledge graph that leads from
a production process to main CPPS elements and further to
CPPS software elements that control and coordinate process
behavior. In this knowledge graph, skills connect production
process variants to main CPPS element to bundle the require-
ments of the process variants. Therefore, this [4ART process
step integrates knowledge scattered on multi-disciplinary en-
gineering artifacts as a basis for requirements tracing.

The 140 Assets in the resulting I4ART knowledge graph
correspond to requirements on business and technical levels,
facilitate placing original requirements and deriving require-
ments for the involved disciplines as a foundation for reuse
to validate the chain of requirements from production process
to CPPS software elements. Therefore, the [4ART knowledge
graph enables specific queries on the 140 Assets, their neigh-
bor assets, and requirements to provide results for making
informed decisions in CPPS design and validation for reuse.

Based on data from a production processes sample with
robot cells, we estimated the number of requirements, trace
artifacts, and trace links for different robot cell types and levels
of detail for requirements tracing, from the process to main
CPPS elements, or in detail to software elements. We also
estimated the effort for TL elicitation and validation based on
engineering artifacts with sufficiently complete and well ac-
cessible data on 140 Assets, their interfaces and dependencies.

These research results build on [2], [26] and go beyond
the state of the art in requirements tracing [19] by a process
(i) resulting in an I40 Asset network with technical links;
(i1) linking a requirements network to the 140 Assets; and
(iii) for detailed tracing to 140 Assets that represent CPPS
software elements. Further, by estimating tracing effort and by
discussing cost-benefit in the application domain multi-model
CPPS engineering, confirming findings in [19], [20].



Limitations. The following limitations of the research re-
quire further investigation.

Feasibility study. The study focused on one use case in a
large CPPS engineering company. This may introduce bias due
to the specific selection of requirements tracing challenges and
data sources considered as well as the roles or individual pref-
erences of the domain experts. To overcome these limitations,
we conducted workshops with domain experts from four CPPS
engineering companies to extend the variety of environments
and alternative approaches for requirements tracing. Further,
we plan case studies in a wider variety of application contexts.

Assumptions on scalability. The scope of this work focuses
on tracing the requirements of a small set of production
processes to CPPS software elements for validating the capa-
bilities of reuse candidates. We focused on typical production
processes and work cells that occur often in automotive
assembly. However, we are aware of the wide variety of CPPSs
in discrete manufacturing and expect challenges for scaling
up the approach to address requirements for reuse in one or
several work lines. Therefore, future work should investigate
the scalability of the [4ART approach.

VIII. CONCLUSION AND FUTURE WORK

Adaptive industrial production systems, Cyber-Physical
Production Systems (CPPSs), require advanced capabilities for
validating the fulfillment of requirements in CPPS elements,
in particular software elements that coordinate and control the
behavior of the CPPS and of the processes they automate [9],
[28]. Tracing requirements of production processes to CPPS
software elements is a promising approach to facilitate require-
ments validation [2], [19].

Unfortunately, in multi-disciplinary CPPS engineering, the
knowledge on processes and reusable assets is often scattered
on engineering artifacts and domain experts, making it hard
to trace multi-disciplinary system requirements at a sufficient
level of detail [19]. Further, it is hard to represent the require-
ments space of changing product and process design variants
for requirements tracing.

Building on the results of domain analysis of 200 types of
screwing processes with 80 types of robot cells and on re-
quirements tracing approaches [2], [26], this paper introduced
the Industry 4.0 Asset based Requirements Tracing (I4ART)
information model and traceability process to integrate knowl-
edge on production processes and assets as a basis to define
sufficiently detailed requirements trace links from production
processes to software-relevant assets for reuse. Following the
I4ART process for a representative use case, we instantiated
an I4ART knowledge graph with requirements trace links on
the requested level of detail.

The Industry 4.0 (I40) Asset seems to be a suitable level
of detail for requirements tracing as it is a concept that all
CPPS engineering disciplines share, similar to the boundary
object discussed in [49]. Discipline-specific properties from
several disciplines come together in the /40 Asset Adminis-
tration Shell (AAS) [13]. The 140 Asset Network, based on
the technical links in several engineering disciplines, provides

meaningful neighborhoods of 140 Assets for contextualizing
reuse in CPPS engineering. The recently introduced skills
concept represents requirements for variants of a production
process to validate business requirements. Therefore, the 140
Asset Network facilitates integrating scattered and collecting
implicit knowledge in CPPS engineering. We assume the
concept to be useful for systems-of-systems engineering in
other areas, where production/transformation processes depend
on resources that automate these processes, e.g., Smart Energy.

We estimated the effort for trace link elicitation on dif-
ferent levels of granularity for robot cells in car assembly.
The technical results indicate detailed requirements tracing
from production process to CPPS software elements to be
feasible for requirements validation with data sources that are
on a suitable level of detail and accessible with automated
approaches, e.g., data logistics [23].

In a validation with domain experts, they reported hetero-
geneous data sources with gaps regarding the level of detail
and content that computers can interpret, similar to findings in
[19], [59]. While the current practice does not support efficient
requirements tracing on the desired level of detail, they expect
digitalization to improve access to data. Hence, capabilities
for efficient trace link elicitation from CPPS data sources will
be a key success factor for introducing requirements tracing
to CPPS engineering practice, where 140 Assets will become
more widely used.

Future Work. Trace link elicitation from CPPS data lo-
gistics. We plan to investigate with a wider range of CPPS
engineering organizations to what extent I4ART knowledge
can be extracted from CPPS engineering tool data and data
logistics approaches [23] to validate the findings in this paper
and to facilitate automating trace link elicitation.

Elicitation of implicit knowledge. An 140 Asset can be the
starting point for exploring its technical links or dependencies
to neighboring concepts. Thus, 140 Assets provide the basis
to elicit and represent implicit expert knowledge and local
knowledge representations, e.g., issue/comment texts.

Reuse of robot cell trace information in and across projects.
I4ART facilitates reuse in CPPS engineering based on trace
information. As robot cells share a similar structure, it is rea-
sonable to assume the reuse of a cell design with adaptations to
cells with similar requirements in or across projects. Reusing
trace information knowledge could make the elicitation and
validation of trace links more efficient.

Validation Methods based on the I4ART. We plan to investi-
gate detecting defect in early CPPS engineering, e.g., forgotten
requirements that were not realized. Efficient validation after
requirement or resource changes is likely to shorten CPPS en-
gineering duration. While I4ART focuses on CPPS structure,
we will consider a behavioral models, e.g., timed automata, to
identify basic time-related defects before simulation.

Security. Aggregating domain knowledge in an Industry 4.0
Asset based Requirements Tracing network creates high-value
assets. These assets require research on security concerns,
e.g., intellectual property theft or using [4ART knowledge for



security attacks on 140 Assets in critical infrastructure, e.g., a
large CPPS destabilizing a national power grid.
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