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Industry 4.0 Asset-based Risk Mitigation for Production Operation

Dietmar Winkler1, Petr Novák2, Jiřı́ Vyskočil2, Kristof Meixner1, Stefan Biffl1

Abstract— During engineering and operation of flexible
robot-based production systems meeting the Industry 4.0 (I40)
paradigm, users require guidance to analyze and resolve is-
sues that may disturb the production process. Challenging
issues stem from causes in several heterogeneous engineering
disciplines. Unfortunately, current risk mitigation guidelines
frequently focus isolated components and not on the risk
of the entire system. This fragmented guidance is hard to
apply for users who are not aware of existing dependencies
between components of different types. Therefore, risks in
the engineering and operation of I40 components are hard to
identify and mitigate. In this paper, we propose the Industry
4.0 Asset-based Risk Mitigation (I4ARM) approach, providing
knowledge for efficient root cause analysis to non-expert users
based on (a) a minimal model for knowledge representation
as an I40 asset network with cause-effect annotations and (b)
the I4ARM method for model building and risk mitigation with
structured guidance. We build on the I40 asset network concept,
cause-effect analysis, and decision trees to enable efficient
and effective risk mitigation with structured guidance. I4ARM
facilitates for engineers (a) defining an Industry 4.0 asset network
and relationships, (b) identifying risks, and (c) supporting risk
mitigation. We conceptually evaluate I4ARM for a real-world
I40 use case. The results showed that the I40 Asset Network
with Cause-Effect Relationships and Decision Trees is usable
and useful both for experienced and novice users to efficiently
and systematically mitigate risks in I40 environments.

I. INTRODUCTION

Industry 4.0 (I40) and Cyber-Physical Production Systems
(CPPSs) aim at addressing business demands for flexible
production in terms of volume and product variants [17],
[31]. Modern robot-based production systems, such as the
Testbed for Industry 4.0 hosted at CTU3, are flexible for
adaptation to automate changing production processes with
production system components and assets [15]. An I40 asset
can be a physical or a logical asset, such as a production
process, described by an Asset Administration Shell [1]
that can collect and provide integrated knowledge during
engineering and operation [5].
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However, in an I40 asset network, the interaction of
production systems components [17] may have risky effects,
like imprecise product placement by a robot, leading to issues
in the production or even to a process failure that requires
intervention by human operators. Therefore, domain experts
have to analyze the risks and issues of the component-based
system during engineering and operation.

The concept of I40 assets enables full digital monitoring
while performing all actions on these components [15], [31].
In addition, the digital twin/shadow [9] of these I40 assets
can hold data and models to facilitate analysis on component
level during engineering and operation. I40 assets (data and
models), forming the entire I40 production system, can be
seen as an I40 asset network that facilitates knowledge
and technology transfer from engineering to practice [15].
This network can support engineers in error handling during
performing specific operations on concrete I40 components.
For example, if a shuttle stops moving, the entire sequence of
consecutive operations, which depend on this shuttle, needs
to be canceled and an operator should be notified to address
this issue. However, it is not clear how to leverage the
knowledge in an I40 asset network for guiding issue analysis.

Risk analysis and mitigation [13] and vendor-specific
guidelines currently focus on the risk of a specific compo-
nent, providing only fragmented guidance for users. As these
approaches often do not focus on the entire system, they are
hard to use for novice users, who are not aware of depen-
dencies between components in the I40 asset network [5]. In
this context, we identified two main challenges.

Challenge 1. Single-discipline engineering plans make it
hard to understand and mitigate multi-disciplinary risks. An
example risk is imprecise position of product, which may
be caused by the robot program (IT), temperature (environ-
ment), or voltage (electrics), designed by different engineers
and domains. There is currently no successful approach
to represent multi-disciplinary risk mitigation guidance for
robot-based production systems, which build on I40 assets.

Challenge 2. No clear method to analyze issues, learn
from previous problems, and mitigate risks. Performing a
Root Cause Analysis (RCA) [22] is difficult with a limited
amount of data and without a multi-disciplinary cause-effect
model: (a) RCA in operation is difficult for an inexpe-
rienced user without guidance and (b) providing relevant
guidance takes time to gain experience with a novel/changed
CPPS [31], even for an expert.

Main goal of this paper is to improve the efficiency
of multi-disciplinary risk mitigation in the engineering and
operation of an automated robot-based production system (a)
by integrating engineering data of the CPPS and for a scope



of risky effects to define possible and most likely Cause-
Effect (C-E) dependencies and root causes based on I40
asset concepts [5] (cf. Figure 2); and (b) by structuring risk
analysis questions and risk mitigation guidelines in a Deci-
sion Tree [23], based on the C-E information for selected,
prioritized, and currently identified risks (cf. Figure 3).

This paper introduces the I40 Asset-based Risk Mitigation
(I4ARM) approach, which is motivated by lessons learned
from working with domain experts and unskilled users of
the Testbed for Industry 4.0 at CTU. The I4ARM builds
on the concepts of the I40 Asset Network [4] and Cause-
Effect (C-E) relationships [22] that together form a Cause-
Effect Knowledge Graph (CEKG) and on Decision Trees
(DTs) [28] to support engineers in (a) defining I40 assets
and relationships for risk analysis, (b) identifying risk causes
during engineering and operation, and (c) supporting efficient
risk mitigation by guiding users in identifying and mitigating
risky effects.

We evaluate the proposed approach to operational risk
mitigation on a simplified real-world example originating
from the I40 Testbed by comparing variants with and without
using decision trees and CEKGs.

Main contributions of this paper include (a) the knowledge
representation capabilities of a CEKG that allow representing
I40 assets and relationships effectively and efficiently for risk
analysis and mitigation [4] and (b) efficient derivation of a
Decision Tree, based on a CEKG, for guiding risk mitigation
for a robot-based production system with I40 components.

The remainder of this paper is structured as follows.
Section II summarizes related work on Industry 4.0, risk
management, and decision trees. Section III motivates the
research questions and approach. Section IV introduces an
illustrative use case for evaluation. Section V introduces the
Industry 4.0 Asset based Risk Mitigation (I4ARM) approach
and provides an example application. Section VI evaluates
and discusses the I4ARM approach with the I40 Testbed.
Finally, Section VII concludes and identifies future work.

II. RELATED WORK

This section summarizes related work on CPPS and In-
dustry 4.0, Risk Management, Cause-Effect Analysis, and
Decision Trees for Risk Analysis Guidance.

A. Cyber-Physical Production Systems and Industry 4.0

The CPPS [31] in the Industry 4.0 Testbed (see Sec-
tion IV) is a representative example of an industrial produc-
tion system that incorporates a set of I40 components, like
robots [30]. An I40 component typically includes physical
and logical assets [14], like products, production processes,
and resources with dependencies and technical data [1],
[26]. Dependencies between I40 components within a CPPS
will require increasing awareness of multi-aspect risks that
come from (i) hidden complexity within this component and
(ii) distributed domain knowledge on the interaction with I40
components [20]. CPPS engineering, following an I40 asset-
oriented view, is based on multi-model digital shadows [31]

in several domains like functional, mechanical, and control
engineering, semantically linked by common concepts [3].

In this work, we build on engineering data to derive the
basic I40 asset network [5]. Further, we build on the I40
Asset Network concept to represent the information in assets,
similar to I40 components, to connect risk effects to causes
in CPPS design.

B. Risk Management and Cause-Effect Analysis

Model-based risk assessment in CPPS focuses on automat-
ing process steps, e.g., as defined by the Failure Mode and
Effect Analysis (FMEA) [29], for single-discipline models.
This includes, for instance, risks from incorrect computation
and timing in signal processing components [16], [21]. The
analysis of risks and the identification of causes, effects, and
counter measures is typically based on a modular Cause-
Effect Analysis [10], [16], such as the Ishikawa process
approach [12]. Such traditional approaches typically focus
on investigating isolated effects, with limitations regarding
multi-disciplinary views that are common in CPPS environ-
ments. However, we see the need for supporting the Cause-
Effect Analysis in an I40 Asset network to focus on I40
components with their dependencies. Loucopoulos et al. [14]
emphasizes addressing risky assets required for a transition
towards CPPS engineering. Liu et al. [13] categorize appli-
cations and shortcomings of works on FMEA approaches,
concluding that the examined approaches lack capabilities to
address interdependencies between failure modes.

In this paper we address this issue by focusing on the
Cause-Effect Knowledge Graph (CEKG) [4] that is based on
the Cause-Effect Analysis supporting the systematic analysis
of root causes based on observed effects [22] following the
Ishikawa approach [12] but extends this approach by taking
into consideration possible and likely risks that go beyond
an isolated risk assessment approach. Hence, we build on
the logical conjunction of risk conditions [21] and on linking
components with ports [10] to formulate multi-aspect queries
for a CEKG represented in an I40 Asset Network in CPPS [5].

C. Decision Trees for Risk Analysis Guidance

In CPPS, risk management during production operation
requires an approach (a) to prioritize possible root causes of
risky effects and (b) to provide guidance in systematically
exploring causes of risky issues in the real system. For
this context, the Decision Tree (DT) is a suitable and well-
proven paradigm in Artificial Intelligence (AI) and Machine
Learning (ML) [18]. DTs have been successfully used for
the classification and regression in data mining [36]. In the
CPPS context, DTs can be used for automatically generating
guidance for identifying root causes based on CEKG and
based on collected data coming from the entire I40 Asset
Network, i.e., the I40 Testbed environment. Contrary to other
AI concepts (such as artificial neural networks or inductive
logic programming), algorithms for constructing DTs are
typically deterministic, allowing to asymptotically estimate4

4The time complexity of C4.5 is super-linear with O(|T |log2|T |) but
there are even faster near-linear implementations [7].



how long the computation/construction of the DT will take.
Therefore, we consider the DT approach suitable for an
industrial production environment.

There are numerous algorithms for constructing DTs [2].
Quinlan’s pioneering algorithm ID3 (Iterative Dichotomiser
3) constructs a DT [23] on the principles of Occam’s razor
and minimization of information entropy in each decision
node. Quinlan improved the ID3 into the C4.5 algorithm
[24], providing the new features: discrete and continuous
attributes, missing values, assignment of differing costs, and
pruning trees. The last famous improvement is Quinlan’s
C5.0 algorithm [25] with the advantages: several orders of
magnitude faster (because of parallelism support), memory
efficient, smaller DTs, boosting (more accuracy), ability to
weight different attributes, and winnowing (reducing noise).
Most improvements in C4.5 and C5.0 can be used directly in
our work and their new features like discrete and continuous
attributes and missing values match the characteristics of data
collected from the I40 Testbed.

There also exist more complex random forest algo-
rithms [6], based on DT ideas with overall better results (in
classification and regression domain). However, in compari-
son to a standard decision tree, where users can understand
the tree in a white-box way, the understanding of random
forests is quite difficult, because of the much higher number
of parameters and significantly more complex effort for
interpretation.

In this paper, we build on the C4.5 DT algorithm and
on information derived from the CEKG to select relevant
variables for the design of the DT as foundation for deriving
guidance for non-expert users.

III. RESEARCH QUESTIONS AND APPROACH

This paper aims at improving the efficiency of multi-
disciplinary risk mitigation in the engineering and operation
of an automated robot-based production system, such as the
I40 Testbed. We employ Design Science research [8], [35],
to investigate how to improve shortcomings in the context
of CPPS engineering processes. As preliminary research
work, we conducted a domain analysis to elicit use cases on
risk mitigation in robot-based production system engineering
and operation, i.e., workshops and interviews with relevant
domain expert roles in the context of the I40 Testbed, leading
to the illustrative use case Industry 4.0 Production Line (cf.
Section IV). We investigate the following research questions
to (a) build up a CEKG and (b) use this graph to derive a
DT for guiding users in issue analysis and risk mitigation:

RQ1. What knowledge model can represent knowledge on
and dependencies between I40 components and risky effects
and their causes? The commission and operation of robot-
based production systems requires various discipline-specific
views including related artifacts and knowledge, such as
mechanical, electrical, and automation plans and experience.
However, the links between these isolated views are often
implicit and not expressed explicitly. The first research ques-
tion focuses on a minimum set of required knowledge and
experience for information and knowledge sharing for risk

Fig. 1: The Industry 4.0 Testbed at CTU in Prague – CIIRC.

analysis and mitigation. We build on knowledge requirements
for root cause analysis during commissioning and operation
including a I40 Asset Network [5] that holds relevant in-
formation and knowledge usable for a cause-effect analysis
with annotations as foundation for a decision tree [4]. To
make the CEKG efficiently usable for non-expert users in a
situation that requires taking decisions fast, we investigate
the following RQ.

RQ2. How can domain experts derive a Decision Tree,
building on a root cause analysis for efficient risk mitiga-
tion guidance? Although the CEKG can help experts in
efficiently identifying root causes based on observed effects,
DTs [18] can be derived from Cause-Effect representation
to help non-experts in guiding them through the root cause
analysis process. Therefore, the second research question
focuses on a method to identify such a DT in CPPS contexts
as foundation for deriving risk mitigation guidelines. This
outcome improves risk mitigation efficiency by representing
effect-specific user guideline decisions for operational risk
analysis and risk mitigation guidelines on system level going
beyond the current focus of risk mitigation on components.

We evaluate Industry 4.0 Asset-based Risk Mitigation
(I4ARM) process approach in a real-world use case in the
I40 Testbed by comparing the capabilities of the I4ARM
approach to traditional risk mitigation design approaches
in the engineering of automated robot-based production
systems (cf. Section VI). We discuss the usefulness and
usability of the I4ARM method results with domain experts
from academia and industry in various contexts, i.e., in the
manufacturing, automotive, and chemical industry domain.

IV. USE CASE INDUSTRY 4.0 PRODUCTION LINE

This section introduces the illustrative use case Indus-
try 4.0 Production Line (cf. I40 Testbed, Figure 1) in the con-
text of evaluation of risk mitigation. The I40 Testbed5 bridges
the gap between scientific state-of-the-art and industrial prac-
tice in various domains, including advanced process control
and planning [33], automated precise robot calibration [19],
and the design of (collaborative) robotic working cells. The
I40 Testbed focuses on developing and transferring new

5Industry 4.0 Testbed: www.ciirc.cvut.cz/teams-labs/testbed/



outcomes to industrial partners. Since significant solution
knowledge is only implicit, understanding and transferring
deep insight to system operation poses a challenging issue
(cf. challenges C1 and C2 in Section I). We have experienced
that especially recognition of possible roots of stopping or
failing the production process is critical. Therefore, this
paper focuses on mitigating such operational risks with the
newly developed hardware and software. Table I summarizes
requirements and capabilities for risk mitigation collected
from domain analysis.

R1. Representation of I40 Asset network with multi-disciplinary dependencies 
between assets.

R2. Representation of cause-effect pathway between selected risky effects and root 
cause candidates in an I40 Asset network.

R3. Cause-effect driven data collection for analysis.
R4. Representation of effect-specific user guideline decisions for operational risk 

analysis and risk mitigation guidelines on system level.
R5. Cost-benefit driven guidelines for effective and efficient risk mitigation based on 

effect-specific decisions.

TABLE I: Identified Risk Mitigation Requirements.

Figure 1 presents the I40 Testbed, consisting of three
industrial robots, KUKA6 Agilus and one cooperative robot
KUKA iiwa. The robots are interconnected with a transporta-
tion system montrac7. Montrac is a mono-rail transportation
system consisting of tracks, shuttles, and positioning units,
which assure exact stopping and positioning of the shuttles
in specific locations, such as work cells close by robots.
Shuttles are relatively autonomous components that move on
tracks according to the given production plan [32]. Shuttles
are equipped with electrical motors, re-programmable control
units memorizing target station of the current movement, and
an infra-red sensors to detect the free space in the front,
available for movement. Supply of DC voltage is provided by
tracks. The production line is generic with focus on the final
assembly of products, including a set of basic production
operations: (i) Pick a component from given coordinates by
a robot; (ii) Place a component to given coordinates by the
robot; (iii) Move a semi-product on a shuttle.

Although the Testbed is orchestrated by industrial ma-
chinery of high reliability, the production process can fail
due to various reasons. For example, the robot movement
to specified coordinates may not be precise enough (e.g.,
due to wrong calibration), or a component may drop from a
robot gripper. The following section builds on this use case
to demonstrate the proposed I4ARM method on a practical
example from the Testbed domain.

V. INDUSTRY 4.0 ASSET BASED RISK MITIGATION

This section introduces the I4ARM knowledge graph and
method (cf. Sections V-A and V-B), the Cause-Effect Knowl-
edge Graph (cf. Figure 2) and elaborates how to derive a
Decision Tree (cf. Section V-C) to structure risk mitigation
guidelines on a system level, based on the I40 Testbed (cf.
Section IV).

6KUKA: www.kuka.com
7montratec: www.montratec.de/en/

A. I4ARM Knowledge Graph for Cause-Effect Annotation

This section describes how to build the Cause-Effect
Knowledge Graph (CEKG) and illustrates an example based
on the I40 Testbed. The underlying meta-model [5] consists
of (a) Risk analysis scope, (b) I40 Assets connected with
links and hypotheses, and (c) failure modes related to effects,
risks, and causes related to the risk assessment approach
(see [5] for details). Domain experts coming from different
disciplines identify related aspects in the I40 Asset Network
by analyzing product, process, resources (as building blocks
of the model), and extend the basic model with causes,
effects, and dependencies. Figure 2 presents an example
CEKG that consists of observable effects, related production
processes and system resources, influenced by a set of root
causes (see legend of Figure 2). Note that this CEKG (a)
provides the foundation for deriving a DT for guiding novice
users in the risk assessment approach or (b) provides added
value to expert users for risk assessment.

Industry 4.0 Asset network representation. The production
system consists of a set of I40 components. Such components
are frequently considered as resources, but they can consist of
sub-resources as well. This detailed view on I40 components
can be provided by domain experts, practitioners, or by
machine vendors for their specific components. This view
is well aligned with the I40 concept of virtualization/data
transparency [31] and the I40 Asset Administration Shell [1],
which encapsulates knowledge on components as software.

Cause-effect annotation to the I40 Asset network. The rep-
resentation of causes and effects related to I40 components
is a foundation for the cause-effect analysis and the CEKG.
Both, causes and effects can be organized within hierarchies
and assigned to resources and sub-resources. Figure 2 shows
an example CEKG for the I40 Testbed. There is a set of four
effects represented as boxes in orange color. In addition,
the I40 component robot concerns two further effects, I40
component montrac brings in three effects. Root causes are
represented as boxes in violet color.

Signals that represent logical or physical variables, such as
environment temperature, play important roles in industrial
system operation and integration. In Figure 2, the CEKG
includes signals (boxes in white color) as data sources for
cause conditions and for questions in the DT. Since these
signal variables are important for system operation, we
expect these signals to be readable in the system and its
components and to be logged for further analysis.

B. I4ARM Method with Cause-Effect Diagrams

To address RQ1, the Industry 4.0 Asset-based Risk Miti-
gation (I40ARM) method consists of three steps to capture
knowledge on causes and effects for enabling risk mitigation
guidance in a multi-disciplinary CPPS environment: (1) De-
sign the CEKG; (2) Design the Decision Tree and Guidelines;
and (3) Validate Decision Tree and User Guidelines.

Step 1. Design Cause-Effect Knowledge Graph. For a
selected risk assessment scope, domain experts design (a)
an I40 Asset Network based on I40 assets and links from
engineering plans and dependencies coming from various
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Fig. 2: Cause-Effect graph for the exemplary production process in I40 Testbed, including products (blue circles), production
processes (blue boxes), and resources (blue rounded boxes); I40 components (green areas); and variables (white boxes).

domain experts and (b) for risky effects, e.g., imprecise
product placement, domain experts can annotate elements
in the I40 asset network by highlighting the Cause-Effect
pathway from risky effects to root causes and counter mea-
sures [5]. Creating the I40 asset network relies on knowledge
on the product (i.e., the product to be built), the process (i.e.,
individual steps how to build a product), and production re-
sources (i.e., required components to construct the products).
Furthermore, dependency relationships (between assets and
views) need to be added to represent cause-effect paths from
I40 components via process assets to effects, such as product
quality or process performance. For each effect, an engineer
or operator of the system obtains a set of plausible causes
that can be roots of the specific effect and marks the cause-
effect path from root cause to effect.

Step 2. Design Decision Tree for Structured Guidance on
selected Effects. This process step focuses on the design of
the DT based on the CEKG (cf. Figure 2), selected variables,
and data sources (cf. Table II) related to selected risky
effects. Following the most relevant Cause-Effect pathways
(prioritization), the result of this step is a sequence of
analysis questions. For each node (question) and leaf (root
cause) in the DT, guidance is available to support non-experts
in checking the system state and providing issue mitigation
options. Hence, experts and non-experts can follow these
suggestions to identify root causes for risky effects.

Step 3. Apply and Validate the DT for User Guideline
in the Target Scope. During engineering and operation, non-
expert users can follow these guidelines and execute resulting
actions based on traceable and repeatable results and guid-
ance. Expert users can (a) validate the results provided by
the DT and (b) iteratively improve the CEKG, the DT, and
derived guidelines.

C. I4ARM Decision Tree Design based on the CEKG

During I40 production system operation, it is crucial
to quickly identify an I40 component that has the most
significant impact on a concrete negative effect. Such a
quick identification requires a guideline of good and targeted
questions, leading to the most probable root cause.

Therefore, in I4ARM, we apply the C4.5 algorithm to
make a DT of analysis questions. The I4ARM method relies
on selected system variables (specified in the CEKG) whose
values are used as inputs for the decision making algorithm
together with specification of root causes indicated during
production as outputs. DTs can be easily created for each
individual effect in CEKG (i.e., set of variables and root
causes) separately so they can be individually tailored for
any specific purpose.

In I40, slightly more pieces of information compared to
conventional systems are available and required: (i) Expert
knowledge represented as knowledge graph (including I40



components and sub-graphs); and (ii) Production and main-
tenance logs of all I40 components (including duration, posi-
tions coming from camera/positioning systems, failure rates,
response time, latency, power consumption, or environmental
parameters, such as temperature or humidity). This is a huge
amount of data, a so-called Big Data problem [11].

For successful and robust application in I4.0 environments,
the following properties of DT creation have to be fulfilled:
(1) Input for the DT making algorithm (both training and
evaluating) should be (i) discrete values and enumerations
(such as state running, idle, stopped, and failure), (ii) con-
tinuous values (physical variables such as speed, voltage, du-
ration, position), and (iii) missing values (some value could
not be measured due to the current failure, or due to ramp-up
phase of the system). (2) We consider an assumption that just
one component has the most significant impact on the specific
(negative) effect. Leaves in DTs can have typically just one
output that is in our case the most significant root cause. (3)
We focus on a single tree for each individual effect rather
than on a forest, if we consider that the tree is evaluated
(and the system is maintained by a human technician rather
than an automated error handling system). The single DT is
a white box in comparison to forests or neural networks that
pose grey or black boxes. From a quality perspective, white
box approach is preferable to a black box approach.
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… … … … … … … …
35.6°C no high nominal 10% no 40% Front collision sensor fail

Output Root CauseGlobal System Robot R1Transportation System montra
Input Variables

TABLE II: Example input data from the I40 Testbed for the
use case Place-Move-Pick (“?” represents a missing value).

Training Data. The I40 Testbed can provide a range of
promising training data for this particular DT task: (1) We
assume that the Cause-Effect Knowledge Graph structure was
prepared/designed by domain experts from numerous com-
ponent descriptions (e.g., sub-graphs for robots, conveyor
belts) Some of those description parts can be delivered by
machine/component vendors, e.g., in the frame of I40 Asset
Administration Shell [1]. From this we get the domain for DT
output (i.e., DT leaves; cf. Figure 3, rendered with GraphViz8

based on input data from the I40 Testbed, cf. Table II). (2)
We combine (i) sensoric and other data from the specific
production system, (ii) statistical and aggregated data related
to the production system (performance per minute, failure
rates per day, etc.), and (iii) available component vendor
data (such as KUKA, Siemens, and B&R) across production
lines, countries, and companies. These combined data can

8GraphViz: graphviz.org/

be serialized into feature vectors including columns repre-
senting individual variables with values. The variables/values
whose values are not available in the respective context, are
substituted by so-called missing values, playing a role of
placeholders in the vector.

VI. EVALUATION, DISCUSSION AND LIMITATIONS

In this section, we conceptually evaluate the the I4ARM
approach in context of the I40 Testbed by comparing four
different variants, i.e., risk mitigation with/without a CEKG
and with/without a derived DT. Therefore, we derived the
following variants for evaluation: (1) NoCEKG.NoDT. In
case of neither using CEKG nor DT, guidelines are based
on experience without cause-effect network and without
a decision tree. This requires long-time experience with
system and typically this approach is not systematic. (2)
DT.NoCEKG. In case of guidelines based on a DT, but not on
a cause-effect network, it is difficult to select the right data
variables. If we mix all relevant causes for example from
different components, there is a high chance of false positives
and noise affecting data can play a significant negative role.
(3) CEKG.NoDT. Considering utilizing guidelines based on
a CEKG, but not on a DT leads to missing statistical power
of data. (4) I4ARM. Our approach includes a CEKG as a
systematic cause effect network and - based on this network
a derived DT.

Comparing the capabilities of the I4ARM approach to tra-
ditional risk mitigation design approaches in the engineering
of automated robot-based production systems, we discussed
with domain experts the usefulness and usability of the
I4ARM method results. We discussed the quality of the DT
and the resulting guidelines. We discussed the applicability
of the knowledge model to novice and experienced users and
further applications building on the I40 Asset Network with
cause-effect annotations and the DT/forest.

Requirements  \ Risk Mitigation Guidance Approaches NoCEKG.NoDT DT.NoCEKG CEKG.NoDT I4ARM
R1. Representation of I40 Asset network with multi-disciplinary 
dependencies between assets.

-- -- ++ ++

R2. Representation of cause-effect pathway between selected 
risky effects and root cause candidates in an I40 Asset network.

-- -- ++ ++

R3. Cause-effect driven data collection for analysis. N/A o N/A ++
R4. Representation of effect-specific user guideline decisions for 
operational risk analysis and risk mitigation guidelines on 
system level.

-- + o ++

R5. Cost-benefit driven guidelines for effective and efficient risk 
mitigation based on effect-specific decisions.

- o o +

B1. Effectiveness of risk mitigation. - + o ++
B2. Efficiency of risk mitigation. -- o o ++
E. Setup effort ++ - + +

TABLE III: Evaluation of Risk Mitigation Guidance Options.

Table III compares I4ARM to these alternative approaches
regarding the requirements (i.e., R1 . . . R5) introduced in
Section IV, effectiveness (B1) and efficiency (B2) for
risk mitigation; and set up effort for data collection and
graph construction (E). The ratings in Table III have been
discussed with experts from academia and industry and
follow a 5-point Likert scale (++, +, o, −, −−), where
++/−− indicate very high/low capabilities. While there
is considerable initial setup effort for creating CEKG and
DT, there are limitations for risk mitigation for approaches



Safety circuit open
(emergency stop)

Motion Speed
> 50%

no

VoltageDeviation
(t,t-15m) > 8%

yes

Pneumatic pressure
not nominal

yes

Environment
temperature > 35

no

Shuttle Speed
== high

yes

Motion Speed
> 50%

no

Power supply problemno

Acceleration & curve
speed exceedance

yes

Robot program flawsno

Robot speed to high

yes

Robot program flaws
no

Pneumatics malfunctionyes

Environment
temperature > 45yes

VoltageDeviation
(t,t-15m) > 8%

no

Temperature
out-of-boundyes

Wrong robot
configuration

no

Shuttle Speed
== high

no

Pneumatic pressur
unreliable

no

Front collision
sensor failyes

Contact issue
no

Fig. 3: Decision tree to identify the root cause for the effect Imprecise Cabin Placement, based on I40 asset properties in
the Cause-Effect Knowledge Graph (CEKG) in Figure 2.

without CEKG and/or DT and strong benefits for the
I4ARM approach.

Discussion. In this subsection, we discuss the results
according to the research questions (cf. Section III).

RQ1. What knowledge model can represent knowledge on
and dependencies between I40 components and risky effects
and their causes? Section V-A introduced the I4ARM Cause-
Effect Knowledge Graph (CEKG) for cause-effect annota-
tion; and Section V-B described the I4ARM method that
applies the CEKG approach. In the evaluation with domain
experts from academia and industry, experts found the CEKG
useful for supporting risk analysis and risk mitigation in
CPPS environments. While the CEKG was partly hard to
understand for non-expert users, experts found the approach
useful for improving and extending their risk analysis process
based on the FMEA. However, the initial effort for analyzing
and initially constructing the CEKG pays off benefits that
arise in the operation phase (due to reduced downtime of
the production system because of a faster identification of
root causes in case of observed negative effects).

RQ2. How can domain experts derive a Decision Tree
building on a root cause analysis for efficient risk mitigation
guidance? Section V-C introduced the I4ARM decision tree
design based on the CEKG and derived data of system logs.
DTs can help non-expert users in efficiently identifying
root causes based on observed effects. Therefore, the DT
approach that is based on data, derived from system logs
or vendor data can help to improve risk analysis and risk
mitigation in CPPS environments.

Limitations. In this paper we introduced I4ARM for risk
analysis and mitigation. However, the following limitations
require further investigation: Evaluation. The comparative
study focused on the use case Industry 4.0 Production Line
in a state of the art I40 Testbed. This may introduce bias due
to the specific selection of production issues challenges and
alternative risk mitigation approaches considered, as well as

the roles or individual preferences of the domain experts. To
overcome these limitations, we plan case studies in a wider
variety of application contexts.

Limitations of the I4ARM knowledge graph. In this work,
the knowledge graph requires CEKG experts that support do-
main experts in constructing the CEKG. We plan tool support
to improve the I4ARM method, to support domain experts
in constructing I4ARM more efficiently and effectively.

Limitations of the Decision Tree. In this paper, we applied
a sample set of test data for manually constructing the DT to
demonstrate the concept of I4ARM. In future research work
we plan to implement the DT approach with test data from
a real-world use case.

VII. CONCLUSION AND FUTURE WORK

The goal of this paper was to improve the efficiency
of multi-disciplinary risk mitigation in the engineering and
operation of an automated robot-based production system.
We introduced the I4ARM method that is based on a Cause-
Effect Knowledge graph (CEKG) based on an I40 Asset
Network in CPPS environments. Traditional cause-effect
analysis approaches, such as the Ishikawa approach [22]
typically focus on one individual effect as foundation for
identifying root causes. In this paper we go beyond the state
of the art by modelling a set of effects in a CEKG approach
within an I40 Asset Network. For providing guidelines for
root cause analysis, we followed the Decision Tree approach
to support experts and non-experts in identifying and miti-
gating risks in a CPPS. In a traditional approach [18] a huge
amount of data is required for deriving the DT. However,
in the I4ARM approach, we focus on a subset of data that
address risky effects with a minimum set of data.

Based on a conceptual evaluation with domain experts
from academia and industry (including expert and non-
expert users), expected benefits have been confirmed:
(1) Non-Experts can use the DT approach to efficiently
identify root causes based on guidelines, derived from
DT and CEKG. (2) Advanced Users can improve over the



guidelines coming from the decision tree by going back to
the cause-effect information in the I40 Asset Network to
systematically look risk sources and adapt the guidelines.
(3) Even with a reasonably moderate amount of data,
a meaningful decision tree can be designed due to the
information coming from the cause-effect information in
the I40 Asset Network. (4) In an organization, there is the
need for a dedicated role that takes care on the CEKG to
improve the decision tree (and the associated guidelines) as
more data becomes available from CPPS operation.

Future Work. We plan to investigate the standardized
representation of data relevant for CEKG modeling, with
the use of AutomationML9 data format or ISA-95 [27]
information modeling and categorization, in the spirit of [34].
We will investigate the I4ARM approach in a large-scale
real industrial environment at a partner in industrial product
packing. For improving the construction of DT, we will
consider integrating vendor guidelines to improve the validity
of derived DT options.
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A. Mazak-Huemer, and M. Wimmer. Leveraging iterative plan refine-
ment for reactive smart manufacturing systems. IEEE Transactions on
Automation Science and Engineering, 18(1):230–243, 2021.

[34] Bernhard Wally, Christian Huemer, Alexandra Mazak, and Manuel
Wimmer. Automationml, ISA-95 and others: Rendezvous in the OPC
UA universe. In 14th IEEE International Conference on Automation
Science and Engineering, CASE 2018, Munich, Germany, August 20-
24, 2018, pages 1381–1387. IEEE, 2018.

[35] Roel J. Wieringa. Design science methodology for information systems
and software engineering. Springer, 2014.

[36] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang
Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing
Liu, Philip S. Yu, Zhi-Hua Zhou, Michael S. Steinbach, David J. Hand,
and Dan Steinberg. Top 10 algorithms in data mining. Knowl. Inf.
Syst., 14(1):1–37, 2008.


