

Efficient Monitoring of Multi-Disciplinary Engineering Constraints with Semantic Data Integration in the Multi-Model Dashboard Process

Stefan Biffl¹ <u>Dietmar Winkler</u>¹ Richard Mordinyi¹ Stefan Scheiber¹ Gerald Holl²

¹TU Vienna, Institute of Software Technology, CDL-Flex, Austria ²Johannes Kepler University, Linz, Austria

http://cdl.ifs.tuwien.ac.at

Motivation & Goals

Motivation:

- Heterogeneous and Multi-Disciplinary Engineering (ME) Environments.
- Changes in individual disciplines can have an impact on product and project quality and need to be identified early.

Key research question focus on:

How to enable selective observation of critical project parameters in heterogeneous environments?

Goals of the paper:

- Multi-Model Dashboard Process (MMD).
- Feasibility Study on MMD Prototype Tool Implementation.

Transmission lines.

Engineering Process Data in ME Projects Challenges & Needs

- 1. Engineering Team Workspace for parameter and constraint definition unclear.
- 2. Data collection in heterogeneous engineering environments are inefficient and error-prone.
- Central Dashboard approach for project-level parameter and constraint evaluation is missing.

Related Work and Research Issues

- Risk Management in Heterogeneous Engineering Environments
 - Distributed and heterogeneous engineering tools and data models might lead to defects (even across disciplines) that are hard to identify.
 - Critical project parameters need to be monitored to identify changes / deviations early.
- Awareness of Constraints in Multi-Model Industrial Plant Engineering Environments
 - Dependencies of parameters/constraints across engineering disciplines.
 - E.g., Constraints must be observed to guarantee max. power consumption, max. heat radiation, max. weight, or available development effort.
- Data and Tool Integration in Engineering Environments
 - Individual tools apply a variety of tools and data models that need to be well integrated.

Research Issues:

- How to establish a process that supports the selective observation of critical engineering project parameters and constraints (the MMD process approach).
- How can a tool support the MMD process to enable efficient and effective parameter and constraint observation (prototype implementation).

MMD Process Approach

- Local Engineering Level (within private workspaces) vs. Project Level (in team workspaces).
- Definition of parameters and constraints according to stakeholder needs; Goal is to have an agreed list of required and available parameter/constraints.
- Mapping of local concepts to common concept (knowledge engineer).
- Monitoring of subscribed parameters on local engineering level.
- **Evaluation** of parameters and constraints on project level.
- Publication of evaluation results and notification of changes and/or constraint violations.

Mapping of Local Representations to Common Concepts

- Individual Local tools and data models.
- Overlapping (data) areas to enable synchronization between engineering plans coming from different disciplines.
- Mapping of local representations to the common data model (contribution of a knowledge engineer).

Candidate Use Cases

- Observing critical project parameters can address several needs within heterogeneous and distributed engineering projects (e.g., in project consortia)
- **Examples Use Cases:**
 - UC-SI: Automated process monitoring of a production system simulation, e.g., observation of conveyor capacity.
 - UC-DE: Plant design and construction, e.g., impact of process design on heat radiation.
 - UC-EL: Electrical systems design, e.g., observation of the overall power consumption in a configuration of devices.
 - UC-PM: Project effort and cost monitoring based on project planning and individual effort reporting systems within project consortia.

Use Case	Parameters	Related Data		
UC-SI	Throughput,	Items per time interval, duration, number of items		
00-31	Cycle Time	items per time interval, duration, number of items		
UC-DE	Maximum w eight and applied w eight	Capacity of basement, individual weights of equipment		
	Cooling pow er needs and capacity	Cooling capacity, heat radiation of machines		
UC-EL	Pow er consumption and needs	Pow er needed by equipment, overall pow er available		
UC-PM	Time and project plans and effort	Individual milestone planning, working effort per person/artifact		

Evalution Use Case

Step 1: Parameter / Constraint Definition Evaluation of the Prototype Implementation

- UC-PM: Project effort and cost monitoring based on project planning and individual effort reporting systems within project consortia.
- Parameter (Variable) and Constraint definition.
- Available Artifacts/Files: XLS, CSV, PDF, TXT, individual engineering plans (if needed)

Step 2: Mapping and Step 3: Monitoring Evaluation of the Prototype Implementation

- Mapping of local representations to common concepts (representations).
- Typically Knowledge Engineers support the mapping process.
- Established links can enable continuous monitoring (of subscribed) parameters in local representations.

Step 4: Parameter / Constraint Evaluation Evaluation of the Prototype Implementation

- Parameter and Constraints Observation
- Evaluation of simple and more complex parameters/constraints
- Short summary of evaluation results (validity flag)
- More details on involved parameters for further analysis

Evaluation Result Summary

Step 5: Publication and Notification

- **Evaluation of the Prototype Implementation**
- Role-specific selection of parameters and constraints (in individual contexts) to be evaluated, e.g., for project management purposes.
- Notification based on changes and constraint violation
 - Via E-Mail
 - Accessible via MMD

Notification	ons		
Inbox			
Created	Subject		
19.03.14 23:32	Variable Hours_Engineer2_KW44 changed!		ŵ
19.03.14 23:32	Constraint 'Engineer2 is not overworked' value has changed	\square	Û
19.03.14 21:44	Variable Hourly_Rate_Manager changed!		Û
19.03.14 21:44	Variable Hourly_Rate_Engineer changed!		ı

Cost / Benefit Considerations

- MMD enables
 - Focused definition of success-critical parameters and constraints
 - Selective observation and monitoring of subscribed parameters and constraints
 - Efficient publication and notification mechanisms.

Process Performance Consideration

Process Step		Effectiveness		Effort	
		Manual	MMD	Manual	MMD
1a	Parameter definition.	0	++	+	-
1b	Constraint definition	0	++	+	-
2	Linking parameters to local representations	-	+		-
3	Change monitoring in local engineering models	-	+		++
4a	Parameter evaluation	0	++	0	++
4b	Constraint evaluation	0	++	+	++
5	Publication of parameters / constraints	0	++	-	+
	Overall	О	++	О	+

Legend: ++ Positive Effects, -- Negative Effects

Summary & Future Work

Summary

- Heterogeneous and Multi-Disciplinary Engineering (ME) Environments.
- Changes in individual disciplines can have an impact on product and project quality and need to be identified early.
- The MMD enables the selective observation of subscribed parameters and constraints across engineering disciplines in heterogeneous environments.

Future Work

- Investigation of scalability constraints and further development of MMD features.
- Application in various industry contexts.

Thank you ...

Efficient Monitoring of Multi-Disciplinary Engineering Constraints with Semantic Data Integration in the Multi-Model Dashboard Process

Stefan Biffl¹, <u>Dietmar Winkler</u>¹, Richard Mordinyi¹, Stefan Scheiber¹, Gerald Holl²

¹TU Vienna, Institute of Software Technology, CDL-Flex, Austria ²Johannes Kepler University, Linz, Austria

Dietmar.Winkler@tuwien.ac.at