
Continuous Architectural Knowledge Integration:
Making Heterogeneous Architectural Knowledge

Available in Large-Scale Organizations

Juergen Musil∗, Fajar J. Ekaputra∗, Marta Sabou∗, Tudor Ionescu†, Daniel Schall†, Angelika Musil∗ and Stefan Biffl∗
∗Institute of Software Technology and Interactive Systems

Vienna University of Technology, Vienna, Austria
Email: {firstname.lastname}@tuwien.ac.at
†Scalable and Resilient Architectures

Siemens AG, Vienna, Austria
Email: {firstname.lastname}@siemens.com

Abstract—The timely discovery, sharing and integration of
architectural knowledge (AK) have become critical aspects in
enabling the software architects to make meaningful conceptual
and technical design decisions and trade-offs. In large-scale or-
ganizations particular obstacles in making AK available to archi-
tects are a heterogeneous pool of internal and external knowledge
sources, poor interoperability between AK management tools and
limited support of computational AK reasoning. Therefore we
introduce the Continuous Architectural Knowledge Integration
(CAKI) approach that combines the continuous integration of
internal and external AK sources together with enhanced seman-
tic reasoning and personalization capabilities dedicated to large
organizations. Preliminary evaluation results show that CAKI
potentially reduces AK search effort by concurrently yielding
more diverse and relevant results.

Index Terms—Architectural knowledge management, continu-
ous software architecture, semantic integration.

I. INTRODUCTION

The organization and management of architectural knowl-
edge (AK) have become an important aspect of software
architecture at management and technical levels alike [1]. In
particular, the timely discovery, sharing and integration of AK
[2] is critical for enabling software architects and developers
to make conceptual and technical design decisions and trade-
offs [3]. Capilla et al. [4] identified internal and external factors
that influence the use of AK amongst practitioners. Beyond the
challenges of creation, maintenance and traceability of AK [4],
there are also integration issues. Specifically, the integration
of architectural knowledge management (AKM) systems along
with existing general-purpose knowledge management systems
(such as enterprise-grade wikis) and their underlying models
represent further obstacles that hinder the introduction and
adoption of AK-specific tools and knowledge repositories
in organizations. This results in cumbersome workflows and
information redundancy [4].
In particular the challenges are twofold. Firstly, architects
and developers do not always document and share AK in
organization-internal systems, but for the sake of convenience

just refer to a diverse collection of organization-external
information sources (e.g., blog posts, Q&A portals, GitHub
repositories). This circumstance undercuts the adoption of
comprehensive AKM approaches which are often perceived
by practitioners as overly prescriptive in the modes and means
of how knowledge ought to be organized. Secondly, existing
AKM tools and approaches often tend to assume a greenfield
scenario when it comes to knowledge management. As a
consequence, existing AKM tools do rarely consider how
they might collectively work together with other third party
AKM tools, since they are tentatively conceptualized as “silos”
with limited openness and interoperability. In combination, the
aforementioned limitations hinder the effective utilization of
AK amongst practitioners as well as the creation of support
for sustainable AKM processes.

In order to address these challenges we propose the Con-
tinuous Architectural Knowledge Integration (CAKI) approach,
which enables the integration and interoperability of internal
and external knowledge sources and AKM tools in large-scale
organizations. Our work has two main contributions: (1) a
pipeline for the continuous AK acquisition and integration
based on tailored, and granular semantic AK models, and
(2) improved AK discoverability through enhanced computa-
tional reasoning and personalization capabilities. Furthermore,
CAKI facilitates software architects the efficient discovery and
gradual exploration of relevant architectural knowledge from
various knowledge sources through a unified point of access
inspired by the simplicity of Google’s minimalistic search
interface.

In a first run, we evaluated the utility and effectiveness
of the approach through a pilot implementation at Siemens,
a company which conducts large-scale software development
projects. Our preliminary results indicate that the CAKI ap-
proach produces more relevant results for architects than tradi-
tional, generic approaches like enterprise search, and improved
discoverability of content in AK repositories. In particular,
the capability of faceted exploratory search enabled by CAKI



Ontology /
Semantic Models

Connectors &
Input Systems

Acquisition 
Integration

B1

A. Acquisition

Organization-
Internal Content 

Sources

B. Synthesis C. Dissemination

Collect data

Organization-
External Content 

Sources

Collective 
Intelligence / 

Crowdsourcing 
Solutions

Analytics & 
Monitoring

Index 
Storage

B2

Semantic 
Storage

B3

Provide 
data

Is used by

Dissemination 
Integration

B5

B4

Software 
Architect

Knowledge 
Engineers

Collect data

Connectors & 
Output Systems

Analysis Interface & 
Tools

Search Interface

Plugins to 3rd Party 
(AK) Tools

AK Intelligence API

C1

AK Manager

Developers / 
Architects

SA / SE
Researcher

Collect data

Crawl reference 
& metadata

Developers / 
Architects

Experts /
Practitioners

A1

D. Feedback

Model 
Refinements

Information & Knowledge 
Increment

Fig. 1. Continuous Architecture Knowledge Integration (CAKI): Multi-sided AK integration and discovery consisting of Acquisition, Synthesis, Dissemination
and Feedback.

allowed architects a fine-grained, incremental exploration of
AK content.

The remainder of this work is structured as follows. Sec-
tion II presents an overview of the CAKI approach comprising
four processing stages. Preliminary results in form of a pilot
study are reported in section III. Section IV discusses related
work and section V concludes and outlines future work.

II. CONTINUOUS ARCHITECTURAL KNOWLEDGE
INTEGRATION APPROACH

In this section we present the Continuous Architectural
Knowledge Integration (CAKI) approach1, which enables
(1) the sustained integration of heterogeneous, organization-
internal and external knowledge sources, and (2) more refined
reasoning capabilities. CAKI realizes a knowledge integra-
tion pipeline, that consists of four stages (see Fig. 1): The
Acquisition stage actively acquires information from content
sources, then Synthesis stage integrates the data using semantic
technologies and organization-specific, semantic AK models.
Dissemination stage supplies an AK search interface, as well
as AKM-specific and general-purpose KM tools with filtered
and personalized AK content. Finally, the Feedback stage
uses meta data from the integrated content and user activity
data to continuously adapt the semantic AK models and
acquisition strategies. In the following paragraphs we describe
the individual stages in more detail.

1http://qse.ifs.tuwien.ac.at/proj/caki/ (last visited 2017-02-28)

A. Acquisition Stage

The Acquisition stage provides a means for acquiring in-
formation from different Content and Information Sources
(A1). These sources can be either organization-internal (e.g.,
enterprise wikis, AK repositories, AKM tools) or external
(e.g., websites, blogs, archival publications) and are automati-
cally indexed by the system. Information acquisition includes
explicit and tacit knowledge, whereby tacit knowledge might
be manually codified by architects, developers and domain ex-
perts using crowdsourcing and collective intelligence systems,
as suggested in [5]. External sources are crawled using Google
Custom Search bindings.

B. Synthesis Stage

The Synthesis stage consolidates the acquired AK by (1)
extracting content indexes, which are used for full-text AK
content search, and (2) adding semantic information to al-
low intelligent content reasoning, personalization and fast
exploratory search.

Acquisition Integration (B1) filters AK content, creates
indexes, and assigns semantic information according to the
predefined semantic AK models. The storage system consists
of two components: First, an Index Storage (B2) stores content
indexes. Second, a Semantic Storage (B2) retains semantic
information about the data, in particular weighted relations
between AK content and semantic models.

The Semantic AK Models (B4) are relevant for concept in-
tegration and contain AK concepts, relations, and constraints.
The models provide the basis for automated inference of



additional AK relations (e.g., to derive relations between two
AK concepts based on their properties similarity). Further-
more the models represent the organization’s AKM “working
model” and thus are designed to integrate AK across organi-
zational boundaries (business units, research groups) and are
key enablers of dissemination and reuse. In order to satisfy
concerns with software architecture and knowledge manage-
ment, models are expected to be a joint work product of
software architects and knowledge engineers. Model tailoring
can be done in three granularity levels: generic, organization-
specific, and domain-specific. Generic level includes models
comparable to ISO/IEC/IEEE 42010 meta models [6]. At the
organization-specific level, models are adapted to concepts and
standards internal to the organization. Finally, domain-specific
granularity level refines organization-level models with respect
to a particular application domain. Each granularity level in-
creases the degree of model detail, and subsequently improves
reasoning precision of the CAKI approach, but also increases
upfront modelling and model maintenance effort. Dissemina-
tion Integration (B5) intelligently combines the query results
from Index Storage (B2) and Semantic Storage (B3) and
personalizes the result sets with respect to individual user and
attached client type.

C. Dissemination Stage

The Dissemination stage provides software architects and
developers with access to AK via different sophisticated
interfaces and connected tools (C1). Below we describe repre-
sentative examples of such CAKI-enabled interfaces and tools:

1. Exploratory-Faceted AK Search: Users can iteratively
explore and receive personalized AK results that are relevant
to them.

2. Plugins to 3rd party (A)KM tools: Filtered query results
can be integrated and accessed within other KM tools and
thus overcomes limited openness and interoperability between
tools.

3. AK Intelligence API: This API provides (A)KM tools
an interface to the reasoning, personalization and context
inference services of a CAKI system. This enables (A)KM
tools to develop novel capabilities by relying on organization-
wide consolidated architectural intelligence. The interface also
provides access to data analytics capabilities that allow AK
managers to assess the needs for future CAKI improvements
and other knowledge management activities.

D. Feedback Stage

The Feedback stage feeds quantitative and qualitative AK
usage information from the Dissemination stage back to the
Acquisition and Synthesis stages for self-adaptation. In the
Synthesis stage, usage data is gathered for steering evolution
and the continuous self-adaptation of semantic AK models. It
thus reduces the effort to keep models up to date. Subsequently
this mechanism would enable the realization of the concept of
Liquid Models [7] in the context of architectural knowledge.
In the Acquisition stage, usage data is used to adapt acqui-

Fig. 2. CAKI-generated results within an exploratory search interface closely
integrated into the existing knowledge management platform.

sition strategies (e.g., less popular sources are less frequently
updated).

III. PRELIMINARY RESULTS

We performed a pilot evaluation of the CAKI approach
in the context of a real-world scenario within Siemens AG,
a large-scale organization. Since our approach assumes a
brownfield starting scenario, the major selection criteria for a
suitable candidate organization were that it has a high baseline
of AKM practice, methods and routinely uses a diverse set of
(A)KM tools across the company.

In the Siemens scenario an index storage (B2 in Fig. 1) was
already in place to support software architectural knowledge
and expert search. However, the AK search process was still
challenging for users due to scattered knowledge sources and
limited semantic annotation attached to the knowledge of this
scattered data. These challenges lead to limited search results
and unclear relations between each search result.

For the pilot, we created generic and organization-specific
semantic models (B4 in Fig. 1). Based on these models,
semantic AK information (e.g., related concepts and types of
relation between concepts) and its context (e.g., knowledge
authors, relevant projects and user roles) were extracted and
integrated within the semantic storage (B1, B3 in Fig. 1). For
the acquisition stage we used external web sources connected
through Google Custom Search and a small set of internal AK
repositories and wikis. For the dissemination stage we focused
on exploratory-faceted search integrated into the Siemens AK
Search results, as depicted in Fig. 2. In this scenario, users can
search for software architecture knowledge (e.g., specific tools,
methods, design patterns and tactics) as well as experts. For



each result, the system provides users with relevant related
concepts and their relation to the selected query element.
Users can also conduct faceted filtering by selecting one or
more relations and/or types of related concepts in the result
box. Additionally, the search history is persisted and displayed
beneath the search-box. This facilitates fast repeated searches
and provides users with breadcrumb path back to their initial
search interests, while also enabling knowledge engineers to
better understand search patterns through data analytics.

One of the main goals of the pilot was to guide users
during their search process toward suitable software design
methods related to different architectural concepts and design
patterns. Pilot trials with architects and developers showed that
the CAKI approach yields richer and more relevant results
compared to search capabilities of existing wikis and other
search systems at enterprise level. Further results also indicate
a more efficient search process and improved discoverability
of AK in repositories that are only poorly integrated into the
current corporate knowledge management landscape.

IV. RELATED WORK

Capilla et al. [4] provide an overview of the evolution
of software architecture knowledge management tools and
identify a trend towards tools that provide more sophisticated
reasoning capabilities. Their overview shows, indeed, that
reasoning is only sparsely used currently and primarily serves
the task of inconsistency detection. Similarly, personalization
capabilities in existing tools are limited. In our work, we rely
on ontology-based models to allow such sophisticated reason-
ing as a basis for personalization mechanisms and exploratory
search. The ability to perform reasoning is a characteristic
of knowledge-based approaches, which are widely used in
software documentation in general and the management of
software architecture documents in particular [8]. Ontology-
based technologies were used by leveraging on recent devel-
opments in the Semantic Web research area, including web-
based knowledge representation languages such as RDF(S)
and OWL, with strong support for reasoning. For example,
De Graaf et al. [9] present an ontology-based approach to
search for AK and an experiment to compare it with the
traditional, file-based search. They propose a wiki-based sys-
tem where the underlying ontology provides a backbone for
organizing information in a more structured way. The ontology
enables more structured navigation for finding information,
faceted search based on concept properties, and the execution
of pre-defined SPARQL queries. Ontologies and semantic-
wikis are the basis of the Ontobrowse approach proposed
by [10] for managing the documentation of Service-Oriented
Architectures. The underlying ontology model allows better
browsing, searching, and querying documents. Similarly, Tang
et al. [11] present an approach to search for AK that employs
a combination of a light-weight ontology and a wiki-based
system. Finally, ontologies are used as a basis for intuitive,
graphical visualizations of AK in [12]. To conclude, several
studies have investigated the use of ontologies to support
the retrieval of AK documentation. Primarily light-weight

ontologies were used which were often combined with wiki-
based systems offering support for browsing, faceted-search
and querying. Yet, these systems still fall short of exploratory
search and personalization mechanisms that rely on sophisti-
cated reasoning algorithms.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced with CAKI a novel AKM
approach that combines the continuous integration of
organization-internal and external AK sources together with
enhanced semantic reasoning and personalization capabilities.
The CAKI approach demonstrated its potential in an initial
evaluation by showing a reduced AK search effort with con-
currently yielding more diverse and relevant results. As future
work we plan to (1) extend the information sources/targets
in the acquisition and dissemination stages, (2) improve AK
model adaptation capabilities and (3) conduct a broader eval-
uation with business units from different application domains.
We think that CAKI introduces a new perspective into AKM
approaches when it comes to knowledge integration, which
might also inspire other approaches in this direction in the
near future.

REFERENCES

[1] P. Kruchten, P. Lago, H. Van Vliet, and T. Wolf, “Building up and
Exploiting Architectural Knowledge,” in 5th Working Conf. on Software
Architecture (WICSA ’05). IEEE Computer Society, 2005, pp. 291–292.

[2] R. C. De Boer, R. Farenhorst, P. Lago, H. Van Vliet, V. Clerc, and
A. Jansen, “Architectural Knowledge: Getting to the Core,” in 3rd Int’l
Conf. on Quality of Software Architectures (QoSA ’07). Springer Berlin
Heidelberg, 2007, pp. 197–214.

[3] S. Stevanetic, K. Plakidas, T. B. Ionescu, F. Li, D. Schall, and U. Zdun,
“Tool Support for the Architectural Design Decisions in Software
Ecosystems,” in Europ. Conf. on Software Architecture Workshops
(ECSAW ’15). ACM, 2015, pp. 45:1–45:6.

[4] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years
of software architecture knowledge management: Practice and future,”
Journal of Systems and Software, vol. 116, pp. 191–205, 2016.

[5] J. Musil, A. Musil, and S. Biffl, “Introduction and Challenges of
Environment Architectures for Collective Intelligence Systems,” in Agent
Environments for Multi-Agent Systems IV, ser. LNCS. Springer
International Publishing, 2015, vol. 9068, pp. 76–94.

[6] ISO/IEC/IEEE 42010, Systems and Software Engineering - Architecture
Description, 2011.

[7] A. Mazak and M. Wimmer, “Towards Liquid Models: An Evolutionary
Modeling Approach,” in 18th IEEE Conf. on Business Informatics (CBI
’16), 2016, pp. 104–112.

[8] W. Ding, P. Liang, A. Tang, and H. Van Vliet, “Knowledge-based
approaches in software documentation: A systematic literature review,”
Information and Software Technology, vol. 56, no. 6, pp. 545–567, 2014.

[9] K. A. De Graaf, A. Tang, P. Liang, and H. Van Vliet, “Ontology-
based software architecture documentation,” Joint 10th Working Conf.
on Software Architecture and 6th Europ. Conf. on Software Architecture,
(WICSA/ECSA ’12), pp. 121–130, 2012.

[10] H.-J. Happel, S. Seedorf, and M. Schader, “Ontology-enabled Docu-
mentation of Service-Oriented Architectures with Ontobrowse Semantic
Wiki,” in PRIMIUM - process innovation for enterprise software, ser.
GI-Edition, vol. 151. Ges. für Informatik, 2009, pp. 61–80.

[11] A. Tang, P. Liang, and H. Van Vliet, “Software Architecture Documen-
tation: The Road Ahead,” in 9th Working Conf. on Software Architecture
(WICSA ’11). IEEE, 2011, pp. 252–255.

[12] P. Kruchten, P. Lago, and H. Van Vliet, “Building Up and Reasoning
About Architectural Knowledge,” in 2nd Int’l Conf. on Quality of
Software Architectures (QoSA ’06). Springer Berlin Heidelberg, 2006,
pp. 43–58.


