
Collective Intelligence-Based Quality Assurance:
Combining Inspection and Risk Assessment to Support

Process Improvement in Multi-Disciplinary Engineering

Dietmar Winkler1,2 Juergen Musil2 Angelika Musil2 Stefan Biffl2

1 SBA Research gGmbH, Favoritenstrasse 16, 1040 Vienna, Austria
dwinkler@sba-research.org

2 Institute of Software Technology and Interactive Systems, CDL-Flex,
Vienna University of Technology, Favoritenstrasse 9/188, 1040 Vienna, Austria

{firstname.lastname}@tuwien.ac.at

Abstract. In Multi-Disciplinary Engineering (MDE) environments, engineers
coming from different disciplines have to collaborate. Typically, individual en-
gineers apply isolated tools with heterogeneous data models and strong limita-
tions for collaboration and data exchange. Thus, projects become more error-
prone and risky. Although Quality Assurance (QA) methods help to improve in-
dividual engineering artifacts, results and experiences from previous activities
remain unused. This paper describes a Collective Intelligence-Based Quality As-
surance (CI-Based QA) approach that combines two established QA approaches,
i.e., (Software) Inspection and the Failure Mode and Effect Analysis (FMEA),
supported by a Collective Intelligence System (CIS) to improve engineering arti-
facts and processes based on reusable experience. CIS can help to bridge the gap
between inspection and FMEA by collecting and exchanging previously isolated
knowledge and experience. The conceptual evaluation with industry partners
showed promising results of reusing experience and improving quality assurance
performance as foundation for engineering process improvement.

Keywords: Collective Intelligence System, Defect Detection, Engineering Pro-
cess, Improvement, FMEA, Inspection, Review, Risk.

1 Introduction

In Multi-Disciplinary Engineering (MDE) environments, different stakeholders have to
collaborate along the project course [1]. Examples for MDE environments include the
engineering of automation systems, such as production automation systems, steel mills,
or hydro power plants. For instance, plant planners are responsible for the basic con-
figuration of a plant, mechanical engineers design the physical setting of the planned
plant, electrical engineers provide electrical and wiring plans, and software engineers
design the control software for operation [2].

In MDE projects, engineers typically follow a sequential process approach with par-
allel discipline-specific engineering tasks and isolated Quality Assurance (QA) activi-

mailto:stefan.biffl@tuwien.ac.at
mailto:%7bfirstname.lastname%7d@tuwien.ac.at

ties [1]. Thus, engineering projects typically suffer from limited data exchange capa-
bilities and become more error-prone and risky [3]. Fig. 1 illustrates an example of a
sequential engineering process observed at an industry partner, key deliverables, related
stakeholders, and isolated QA activities. Examples of isolated QA activities are re-
views/inspections [4, 5], Software and System Testing [6, 7], Failure Mode and Effect
Analysis (FMEA) [8, 9], the Fault Tree Analysis (FTA) [10], or the Defect Causal Anal-
ysis (DCA) method [1][11]. While reviews/inspections and testing focus on defect de-
tection, FMEA, FTA, and DCA focus on assessing risks and on identifying root causes
of defects. Typically, these QA approaches focus on individual engineering artifacts
with limited data exchange and knowledge and experience reuse. However, knowledge
and experience from method applications can provide a valuable input for improving
QA methods. For example, defect lists (a key outcome of inspection) can drive the
FMEA to assess related risks; candidate risks (a key outcome of the FMEA) represent
knowledge that can be reused to improve inspection processes.

System Design Implementation Test /
Commissioning Operation

Electrical
Engineer

Process
Engineer

System
Construction

Variable List
Software Model

PLC Code

Process
Design

Electrical
Plan

Plant
Topology

Mechanical
Design

Electrical
I/O

Plant
Planner

Electrical
Engineer

Mechanical
Engineer

Software
Engineer

Electrical
Engineer

Process
Engineer

Software
Engineer

Plant Operation
Documents

Operator

Test Specification
Test Plan

Plant
PlannerMechanical

Engineer
QA

QA

QA QA

QA

QA QA QA

Fig. 1. Sequential Engineering Process in Multi-Disciplinary Engineering Projects [1].

However, individual QA methods are applicable for different types of engineering ar-
tifacts. For instance, reviews/inspections are well established in Software Engineering
[4] and focus on early defect detection in various types of engineering artifacts, e.g.,
text documents, images, engineering plans, or software code. In Systems Engineering,
e.g., in the Automotive Systems Domain, the FMEA is an established approach for risk
assessment with focus on design, product, and process requirements [8]. Although re-
views are used in Systems Engineering, more structured approaches, such as inspec-
tions, are rarely applied. Further, to the best of our knowledge, there are only limited
attempts to combine different QA approaches, such as reviews/inspections and the
FMEA, to gain additional benefits derived from applied methods. The combination of
reviews/inspections and the FMEA can enable engineering process improvement in
terms of using defect lists (derived from review/inspection approaches) as input for the
FMEA; identified risks and countermeasures can be re-used in an inspection approach
to improve review and inspection processes. However, main challenges include how to
combine review/inspection processes and the FMEA in terms of improving QA mech-
anisms. More specifically, (a) how to reuse results from review/inspection in the FMEA
(and vice versa) and (b) how to collect, aggregate, disseminate, and reuse engineering

knowledge coming from method applications. The reuse of engineering knowledge can
improve individual methods and increase method application performance. A type of
software system that could address these capabilities are Collective Intelligence Systems
(CIS), which are a particular kind of collaborative, social platform that focus on aggre-
gation and dissemination feedback loops of user-generated content [13]. In software
engineering, CIS have been sustainably integrated as tool support in best-practice soft-
ware development processes, such as bug tracking (Jira1), code reviews (Gerrit2) or
wide-scale software repository reuse (GitHub3). Therefore, CIS seems to be a promis-
ing starting point to bridge the gap between the aforementioned, so far isolated ap-
proaches. This paper addresses the challenges of combining inspections and FMEA on
a conceptual level to provide a mechanism for reusing knowledge in engineering pro-
jects to (a) improve the engineering product and (b) to improve methods for defect
detection (i.e., inspection) and risk management (i.e., the FMEA) processes by using a
collective intelligence system.

The remainder of this paper is structured as follows: Section 2 presents related work
on reviews and (software) inspection, the FMEA, and collective intelligence systems.
Section 3 presents the research issues. Section 4 introduces to the concept of collective-
intelligence driven defect detection and risk management based on required capabili-
ties. Section 5 presents an initial concept evaluation. Finally, Section 6 discusses
strength and limitations of the approach and concludes the paper.

2 Related Work

This section summarizes related work on (software) inspections for early defect detec-
tion (Section 2.1), the FMEA for systematic risk assessment (2.2), and Collective Intel-
ligence Systems (2.3) to capture, manage, and reuse engineering knowledge for better
supporting both inspection and FMEA processes.

2.1 Reviews and (Software) Inspections

Software reviews and inspections are well-established formal defect detection ap-
proaches in Software Engineering [4] to identify defects early and efficiently. Reviews
and inspections follow a defined process executed by defined stakeholders. Fig. 2 pre-
sents a common inspection process [14] including related roles.

The traditional inspection process includes six steps [14]: Inspection Planning (1) is
based on project/quality plans or driven by a decision to conduct an inspection for a
specific engineering artifact. A moderator is responsible for planning tasks, i.e., as-
sessing inspection artifacts (e.g., based on inspection entry criteria), providing method
support (e.g., reading techniques), and organizing team members and inspection activ-
ities. Depending on the experience of the team members and the complexity and novelty

1 Software tool Jira: https://www.atlassian.com/software/jira
2 Gerrit: https://www.gerritcodereview.com
3 GitHub: https://github.com

https://www.atlassian.com/software/jira
https://www.gerritcodereview.com/
https://github.com/

of the engineering artifacts, an Optional Overview (2) meeting helps inspection team
members to get familiar with the provided inspection package. Note that inspections
can also facilitate knowledge exchange and learning [15]. Individual preparation (3)
takes as input the inspection package and delivers a set of individual defect lists pro-
vided by inspectors of the inspection team. The main goal of an Inspection Meeting (4)
is to derive an agreed team defect list from the discussion of individual defect lists. In
the Rework (5) phase responsible authors fix reported defects in their engineering arti-
facts and provide updated engineering artifacts. Finally, during the Follow-Up (6) phase
the moderator checks these modifications and decides on (a) releasing the engineering
artifact or (b) scheduling another inspection cycle (i.e., re-inspection), if quality criteria
are not acceptable. Reasons for a re-inspection are based on too many reported defects
or critical issues that might cause risks or have an impact on other engineering artifacts.

Fig. 2. (Software) Inspection process steps with related stakeholders [14].

Reading techniques are supporting guidelines that guide a team of inspectors through
the reading process and support them in detecting defects in various engineering arti-
facts, e.g., specification documents, models, diagrams, or software code. A reading
technique is a structured approach on how to review/inspect a specific engineering ar-
tifact [16, 17] and thus, represent engineering knowledge for inspection application.
Several studies investigated different reading techniques and reported on strength and
weaknesses in different study contexts [4, 16, 18]. A Checklist-Based Reading (CBR)
technique approach consists of a set of sequential and domain-specific tasks that ena-
bles inspectors stepping through the inspection artifacts and report candidate defects.
Usage-Based Reading (UBR) focuses on prioritized use cases [14] and apply business-
critical scenarios for defect detection. The application of Perspective-Based Reading
(PBR) enables defect detection from various perspectives, e.g., developer, tester, or
system architect [19]. Although reading techniques are popular in software engineering,
they are not widely used in MDE. In the context of MDE, perspectives seem to be a
promising approach, because engineers from different disciplines can take their indi-
vidual viewpoints on engineering artifacts and report candidate defects. Winkler and
Biffl [20] proposed the focused inspection approach with tool support that enables the
application of perspective-based reading in MDE contexts.

Beyond improving products (artifacts) in Software Engineering, inspections, results
of inspection process steps represent explicit knowledge on engineering artifacts (e.g.,
entities or relationships) or the application domain (e.g., architecture best practices).

1. Inspection
Planning

2. (Optional)
Overview

4. Inspection
Meeting

5. Rework

6. Follow-Up

3. Individual
Preparation

Moderator

Moderator

Moderator

Inspection
Team

Individual
Inspectors

Inspection
Team

Author

re-inspection (if required)

However, this explicit knowledge typically is lost after inspection and is only rarely
used for improving processes or for supporting related engineering or QA activities.

2.2 Failure Mode and Effect Analysis

The main goal of the Failure Mode and Effect Analysis (FMEA) focuses on (a) the
assessment of product reliability and (b) the early identification of risks, which can have
a critical impact on the customer and use of the product [8]. FMEA team members
identify and assess risks, candidate defects, and countermeasures based on system re-
quirements, required features, and proposed solutions. During risk assessment, the
FMEA team estimates probability (P), severity (S), and detectability (D) of candidate
defects on a linear scale from 0 to 104 for every single requirement/feature and derives
the Risk Priority Number (RPN): RPN = P*S*D. In the context of an FMEA, probabil-
ity refers to the likelihood of defect occurrence in the final product in the field; severity
describes the consequences and the impact of a defect in the field; and detectability
refers to complexity factors of identifying and locating the defect in the final product
or artifact. The related RPN threshold values are defined in the project context to focus
on the most critical issues. Based on this defined threshold value, RPNs above this
value require countermeasures, RPN values below this threshold are accepted as risks
and no actions are defined.

1. FMEA
Planning

2. Component
and Feature

identification

3. Determine
candidate

defects

4. Effect Assessment:
Estimate P, S, and D
and calculate RPN

6. Recommend
corrective

actions

8. FMEA
Report

7. Changes

No

Yes

Re-Estimation based
on modifications

5.
Corrective

Actions
Required?

Fig. 3. Failure Mode and Effect Analysis (FMEA) process steps based on [9].

Fig. 3 illustrates the basic FMEA process based on [9]: (1) FMEA planning is exe-
cuted by the quality or project manager based on the application domain, requirements,
or expected risks including scope definition, team composition and scheduling. In
FMEA workshops, the team (often key stakeholders in MDE environments) identifies

4 Linear scale for probability, severity, and detectability: 0 stands for very low probability, se-

verity, and detectability; 10 indicates critical probability, severity, and detectability. For ex-
ample, the rating 10/10/10 means that candidate defects will definitely be in the final product
(high probability) with a very critical impact (high severity) and it is very hard to identify the
defect early (high detectability).

(2) Key Components and Features and determine (3) Candidate Defects. Candidate de-
fects typically represent a list of risks and possible issues in context of the artifact or
project. Experiences from previous projects often help to identify typical issues in the
domain. However, this step often applies implicit experience and knowledge of experts
in the FMEA team. (4) Effect Assessment. For every candidate defect the FMEA team
determines defect probability, severity, and detectability and calculates the RPN based
on expected defect effects. (5) The Decision on Required Corrective Action is based on
the RPN, i.e., whether or not the RPN exceeds defined threshold values. (6) Corrective
Actions (countermeasures) need to be identified and recommended by the FMEA team.
(7) Implemented Changes require a re-assessment of the RPN. Note that this cycle
could be repeated several times. Finally, the FMEA results in a (8) FMEA Report.

The FMEA has been successfully applied in systems engineering domains, such as
automation systems, for early risk and defect assessment and prevention. However, ex-
isting experiences (from previous projects) or knowledge are typically embodied within
FMEA team members but rarely made explicit for reuse in other projects or improve-
ment of FMEA methods. CIS can help to make this implicit knowledge explicit.

2.3 Collective Intelligence Systems

Collective Intelligence Systems (CIS) are socio-technical platforms, which provide the
efficient aggregation and dissemination of user-generated content and knowledge [13].
Representative examples of popular CIS are Wikipedia, Twitter, YouTube and the
Eclipse Marketplace5. In addition, CIS possess effective self-organization capabilities,
which are enabled by a characteristic feedback loop [12]. This loop coordinates the
overall information flow between the platform users, thus enabling the division of labor
and increased awareness of mission-relevant information.

Both inspection and the FMEA strongly rely on the interaction of human experts,
who contribute to projects by applying best-practice methods. Often experiences and
knowledge are implicitly embodied by experts but not explicitly expressed. Implicit
knowledge hinder reuse of experiences and knowledge (a) in projects with similar
method application and (b) across methods, here: inspection and the FMEA. Reusing
experience and knowledge is an important foundation for engineering improvement. In
context of information artifacts improvement efforts often focus on usability aspects
(such as the cognitive dimensions framework [21]) to lower barriers for users to share
and retrieve information. Another approach would be to address these issues on a sys-
temic level. Thus, CIS capabilities could support human-centric activities, such as in-
spection and FMEA. In context of this paper, we consider a CIS as a “black box” and
focus on the application of a CIS on a conceptual level for combining inspections and
FMEA on process level to gain benefits from method application towards product and
process improvement.

5 Eclipse Marketplace: https://marketplace.eclipse.org

https://marketplace.eclipse.org/

3 Research Issues

The isolated application of inspection for early defect detection in Software Engineer-
ing and the FMEA for early risk assessment in Systems Engineering helps to improve
related artifacts in isolated phases. The combination of inspection and FMEA, powered
by a CIS, aims at supporting project stakeholders in (a) improving methods based on
the previous method application results, (b) making implicit process knowledge explicit
for reuse purposes, and (c) gain additional benefits and synergies for method and pro-
cess improvement. Therefore, we derive two research issues:

RI-1. How can a collective intelligence-based quality assurance (CI-based QA) ap-
proach support engineering process improvement in the MDE domain? The combina-
tion of inspection and the FMEA on process level can help to link results and experi-
ences between both approaches. For instance, team defect lists (derived from the in-
spection process) can support guiding the FMEA process as foundation for determining
candidate defects; results from FMEA application (candidate risks and defects) can
support improving defect detection techniques to address these risks.

RI-2. What capabilities are required to enable CI-based QA for Inspection and the
FMEA? Inspection, FMEA, and the combination of both approaches are typically hu-
man-centric application including high expert effort for inspection and FMEA pro-
cesses. However, tool support aims at decreasing effort and cost, and increasing project,
product, and method quality. Thus, the main question is which capabilities are needed
for a tool solution, based on a CIS, to mediate the integrated quality assurance approach.

4 Collective Intelligence-Based Quality Assurance

The combination and integration of Inspection [18] and the FMEA [9] – as part of a
Collective Intelligence-based Quality Assurance (CI-based QA) process – aims at in-
cluding advantages of inspection and the FMEA, supported by a CIS. Advantages of
software inspection include (a) early defect detection in various types of engineering
artifacts by applying a structured process approach, (b) guidance of inspectors and
teams of inspectors through the reading process by using reading techniques, and (c)
making implicit knowledge explicit based on process steps, reading techniques (e.g.,
checklists or scenarios), and inspection outcomes (e.g., defect lists). Advantages of the
FMEA include (a) early risk assessment of engineering artifacts, (b) list of compo-
nents/features, related candidate risk/defect lists, RPN measures (see Section 2.2), cor-
rective actions, and (c) process knowledge based on FMEA application process steps.

Fig. 4 presents the combined inspection and FMEA process approach with a CIS
including (A) inspection process steps (left hand side); (B) FMEA process steps (right
hand side); and (C) Collective Intelligence System (middle part of Fig. 4). The inspec-
tion process (A in Fig. 4) takes as input the inspection object, e.g., an architecture de-
sign document and a set of requirements (A1). Note that typical inspections focus on
the analysis of inspection objects in context of a stable reference document, i.e. require-
ments in this case. Reading techniques (A2) provide concrete guidelines for traversing

the document under inspection, the perspective-based reading (PBR) approach in this
example. Outcome of the inspection process is the agreed team defect list (A3) and
engineering knowledge, represented by identified entities, relationships, typical de-
fects, and explicit inspection knowledge (A4), such as dependencies between the archi-
tecture design and requirements or defects related to design elements. See section 2.1
for details on the inspection process. The FMEA process (B in Fig. 4) takes as input
requirements (common for inspection and the FMEA) and the team defect list (B1),
which was the output of the inspection process, for FMEA execution. Furthermore,
defined guidelines for risk assessment (B2), e.g., the fault tree analysis (FTA) ap-
proach, are used to identify additional candidate defects, root causes, and corrective
actions. Outcome of the FMEA include RPN, risks, and corrective actions (B3). Fur-
thermore, engineering knowledge represent explicit knowledge on how to derive risks,
estimation values and experiences for RPN calculation, and how to identify corrective
actions. See Section 2.2 for details on the FMEA process approach.

(Software)
Inspection
Process

FMEA
Process

Inspection
Object, e.g.,

Systems Design
Requirements

A. Inspection Process

FMEA Team

Reading
Techniques,

e.g., PBR

Risk Analysis
Methods, eg,

FTA

Team
Defect List

Engineering
Knowledge

RPN, Risks &
corrective

actions

Engineering
Knowledge

Inspection
Team

B. FMEA Process

Engineering
Knowledge

A2

A1

A3 B1

B2

B3

C. Collective Intelligence System

A4 B4

C1 C2

Fig. 4. Combined Inspection and FMEA process bridged with a Collective Intelligence System

(CI-based QA) with input/output artifacts.

Finally, the Collective Intelligence System (C in Fig. 4) aims at collecting experiences
and knowledge from inspection processes (A4) and the FMEA process approach (B4).
Semantic Web Technologies, e.g. based on [22, 23], can integrate and link explicit ex-
perience and engineering/process knowledge aspects from collected inspection results
(e.g., requirements, defects, inspection process steps, and reading technique aspects)
and FMEA results (e.g., risk, candidate defects, RPN estimations, and corrective ac-
tions). Combined/integrated engineering and process knowledge is used (a) to improve
inspection processes and reading techniques (C1), e.g., to better address identified can-
didate defects (derived from FMEA processes), and (b) to improve FMEA processes
by providing knowledge from inspection processes (e.g., scenarios that can support

FTA). Knowledge and method engineers can use this experience/knowledge to improve
the methods in their application domain.

However, method and process improvement (for future application) typically require
time and effort to be implemented within an organization. The proposed approach gains
immediate benefits that come from reusing results from previous tasks, here inspection
results (i.e., team defect lists that represent real defects) in the FMEA approach to assess
additional risks and identify corrective actions. Furthermore, inspection is well suited
for training and learning purposes. Thus, immediate benefits can arise if new engineers
have to be introduced to a project. Following the structured inspection approach, engi-
neers will get familiar with engineering artifacts as “a by-product” of defect detection.
Finally, in the MDE context, engineers are typically driven by mechanics and electrics
and they are often familiar with the FMEA approach, while software inspection is not
well established in this domain. Combining best practices from software engineering
and automation systems development is a promising research direction to improve en-
gineering projects and processes in MDE.

5 Tool Capabilities and Conceptual Evaluation

Inspection and the FMEA are important QA approaches in Software Engineering and
the Automation Systems Domain. However, discussions with industry experts in the
automaton system domain and research collaborators showed the need for process and
tool support like a CI-based QA approach, e.g., combining inspection and the FMEA.
For instance, customers of our industry partners claimed the need for FMEA for risk
assessment. However, the application of a FMEA is time-consuming without capabili-
ties for systematically reusing results or experiences from FMEA workshops. Thus,
there is a clear need for providing method and tool support for FMEA execution. Soft-
ware Inspection seems to be a promising approach to complement the FMEA to make
implicit experience and knowledge explicit and to provide tool support for method ap-
plication based on CIS, i.e., CI-based QA. Based on the conceptual process description
(see Fig. 4), experiences with Software Inspection and the FMEA, and in discussions
with our industry partners in the automation systems domain, we derived a set of capa-
bilities needed for CI-based QA tool support:

Defect Detection Performance:
• Support for early defect detection and risk assessment to identify defects and risk

early in the engineering process.
• Need for effective and efficient defect detection / risk assessment.

Risk Assessment:
• Need for systematic and traceable quality assurance processes, i.e., process steps

and related outcomes have to be repeatable and traceable.
• Need for defined responsibilities and roles for method application, e.g., for planning,

execution, and rework.
• Need for guiding less-experienced team members during method application.

Reuse of Experience and Tool Support for Engineering Process Improvement:
• Need for reusing experiences and knowledge from method application for engineer-

ing process improvement. This need includes the collection, aggregation, dissemi-
nation, and reuse of engineering knowledge to improve engineering methods.

• Need for immediate improvements of artifacts and engineering plans after method
application, i.e., immediate effects of method application.

• Need for tool support to help inspection/FMEA teams in executing inspec-
tions/FMEA processes more effectively and efficiently.

Based on prototype evaluations and discussions with industry experts and research part-
ners, we assessed the traditional inspection approach, the FMEA, and the CI-based QA
process approach towards expected/needed key capabilities. Table 1 summarizes
needs/capability considerations based on the initial evaluation of the process prototype
and identified key capabilities towards a tool-support for CI-based QA.

Table 1. Needs/capabilities of Inspection, FMEA, and CI-based QA approach
(++ strong support, o neutral or method-specific support, -- weak support).

Needs / Capabilities Inspection FMEA CI-Based QA
Effective & efficient defect detection ++ -- ++
Effective & efficient risk assessment o ++ ++
Systematic quality assurance o o ++
Traceable results o o ++
Defined roles and responsibilities o o o
Guidelines for method application
(methodological support) o o ++

Reuse of Experiences and Knowledge -- -- ++
Immediate artifact improvements o o ++
Tool support o o -- 6
Implementation/Application Effort o o o

Main results of the initial evaluation showed promising results for the CI-based QA

approach because the approach combines/integrates best practices from both applica-
tion methods, i.e., method support and processes from inspection and FMEA and pro-
cess interfaces in between. However, typical applications focus on isolated improve-
ments of artifacts rather than on a comprehensive view on linked methods. Therefore,
in this paper we identified key needs and required capabilities for a comprehensive tool
solution. A tool solution for the CI-based QA approach is currently under development.

6 Discussion, Limitations, and Future Work

In this paper, we introduced a collective intelligence-based quality assurance (CI-based
QA) concept, an integrated approach for combining best-practice Inspection and the
Failure Mode and Effect Analysis (FMEA). On a process level, both approaches can

6 Tool support is currently under development.

complement each other by reusing QA process artifacts, e.g., the team defect list (an
important output of inspection) can help to drive the FMEA process based on identified
defects in inspection objects. Both approaches, inspection and FMEA, come with com-
prehensive method support and guidelines, but there are limited exchange opportunities
to benefit from each other. Based on guidelines and method best-practices, engineering
knowledge is embodied in human experts and are not available explicitly. A CIS can
help to make this knowledge explicit and available for (a) improving individual arti-
facts, (b) supporting individual methods for improvement, and (c) gain additional ben-
efits from cross-method applications.

Research issue RI-1 focuses on how a collective intelligence-based quality assurance
(CI-based QA) approach can support engineering process improvement in the MDE
domain. Figure 4 presents an integrated process approach for bundling benefits of in-
spection and the FMEA and support knowledge generation, aggregation, dissemination,
and reuse based on a CIS. Discussions with industry experts and research collaborators
found the approach promising for real-world application to improve defect detection
and risk assessment based on experiences provided by CIS. However, tool support is
needed to support CI-based QA. In addition, evaluations in industry contexts remain
for future work.

Research issue RI-2 focuses on required capabilities for a CI-based QA tool support.
Table 1 summarizes the main capabilities derived from observations and discussions
with industry partners and domain experts. This list of expected capabilities represents
the foundation for implementing and evaluating a CI-based QA tool.

Limitations. Most important limitations of the approach focus (a) on limited tool

support of the CI-based QA (currently under development) and (b) limited industrial
evidence on benefits/limitations of the application of an integrated CI-based QA tool.
First results in lab environments and during pilot tests at industry partners showed
promising results. However, in-depth empirical studies are needed to investigate the
impact of CI-based QA on defect detection and risk assessment.

Future work will include (a) definition of a collective intelligence system capable

of supporting key capabilities, (b) implementation of the CI-based QA approach, (c)
related pilot studies at industry partners, and (d) empirical evaluations in larger indus-
trial contexts.

Acknowledgements. Parts of this work were supported by the Christian Doppler

Forschungsgesellschaft, the Federal Ministry of Economy, Family and Youth, the Aus-
trian National Foundation for Research, Technology and Development, and the TU
Wien Doctoral College on Cyber-Physical Production Systems.

References

1. Kovalenko, O., Winkler, D., Kalinowski, M., Serral, E., Biffl, S.: Engineering Process Im-
provement in Heterogeneous Multi-Disciplinary Environments with the Defect Causal Anal-
ysis. In: 21st EuroSPI Conference, pp. 73-85, Springer (2014).

2. Biffl, S., Lüder, A., Winkler, D.: Multi-Disciplinary Engineering for Industrie 4.0: Semantic
Challenges, Needs, and Capabilities. In: Biffl, S., Sabou, M. (eds.) Semantic Web for Intel-
ligent Engineering Applications, Chapter 2, Springer (2016) (to appear).

3. Biffl, S., Moser, T., Winkler, D.: Risk Assessment In Multi-Disciplinary (Software+) Engi-
neering Projects. IJSEKE, SI on SW Risk Assessment, 21(2), pp. 211-236 (2011).

4. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-Art: Software Inspection after 25 years.
J. of Software, Testing, Verification and Reliability, 12(3), pp. 133-154 (2002).

5. Wiegers, K.: Peer Reviews in Software: A Practical Guide. Addison-Wesley (2001).
6. Broekman, B., Notenboom, E.: Testing Embedded Software, Addison Wesley (2002).
7. Myers, GJ., Sandler, C., Badgett, T.: The Art of Software Testing, Wiley & Sons (2011).
8. Stamatis, DH.: Failure mode and effect analysis: FMEA from theory to execution, ASQ

Quality Press (2003).
9. Teng, S-H., Shin-Yann, H.: Failure mode and effects analysis: an integrated approach for

product design and process control. J of Quality & Reliability Mgmt 13(5), pp.8-26 (1996).
10. Ericson, CA.: Fault Tree Analysis Primer. CreateSpace Independent Publishing, (2011).
11. Kalinowski, M., Card, DN., Travassos, GH.: Evidence-based guidelines to defect causal

analysis. IEEE Software, 29(4), pp. 16-18 (2012).
12. Musil, J., Musil, A., Weyns, D., Biffl, S.: An Architecture Framework for Collective Intel-

ligence Systems. In: 12th Working IEEE / IFIP Conference on Software Architecture
(WICSA), pp. 21-30, IEEE (2015).

13. Musil, J., Musil, A., Biffl, S.: Introduction and Challenges of Environment Architectures for
Collective Intelligence Systems. In Weyns, D., Michel, F. (ed). Agent Environments for
Multi-Agent Systems IV, Springer International Publishing (2015).

14. Laitenberger, O., DeBaud, J-M.: An encompassing life cycle centric survey of software in-
spection. J. of Systems and Software, 50(1), pp. 5-31 (2000).

15. Carver, J., Shull, F., Basili, V.: Can observational techniques help novices overcome the
software inspection learning curve? An empirical investigation. ESE J, 11(4) (2006).

16. Kollanus, S., Koskinen, J.: Survey of Software Inspection Research: 1991-2005, Working
Papers WP-40, University of Jyväskylä (2007).

17. Travassos, G., Shull, F., Fredericks, M., Basili, VR.: Detecting defects in object-oriented
designs: using reading techniques to increase software quality. In ACM Sigplan Notices,
34(10), pp. 47-56). ACM (1999).

18. Biffl, S.: Inspection Techniques to support Project and Quality Management. Habilitation,
Vienna University of Technology, Shaker (2001).

19. Shull, F., Rus, I., and Basili, VR.: How perspective-based reading can improve requirements
inspection. IEEE Computer, 33(7), pp. 73-79 (2002).

20. Winkler, D., Biffl, S.: Focused Inspections to Support Defect Detection in Multi-Discipli-
nary Engineering Environments. In: 16th International Conference on Product-Focused
Software Process Improvement, Research Preview Paper (2015).

21. Blackwell, A., Green, T.: Notational systems – the cognitive dimensions of notations frame-
work, HCI Models, Theories, and Frameworks: Toward an Interdisciplinary Science. Mor-
gan Kaufmann (2003).

22. Moser, T., Mordinyi, R., Winkler, D., Melik-Merkumians, M., Biffl, S.: Efficient Automa-
tion Systems Engineering Process Support Based on Semantic Integration of Engineering
Knowledge. 16th Int. Conf. on Emerging Techn. and Factory Automation (ETFA) (2011).

23. Novak, P., Serral, E, Mordinyi, R., Sindelar, R.: Integrating Heterogeneous Engineering
Knowledge and Tools for Efficient Industrial Simulation Model Support. Advanced Engi-
neering Informatics, 29(3), pp. 575 – 590 (2015).

	1 Introduction
	2 Related Work
	2.1 Reviews and (Software) Inspections
	2.2 Failure Mode and Effect Analysis
	2.3 Collective Intelligence Systems

	3 Research Issues
	4 Collective Intelligence-Based Quality Assurance
	5 Tool Capabilities and Conceptual Evaluation
	6 Discussion, Limitations, and Future Work
	References

