
Software Architecture Patterns: Reflection and Advances

[Summary of the MiniPLoP Writers’ Workshop at ECSA’14]

Neil B. Harrison
Utah Valley University, USA
neil.harrison@uvu.edu

Uwe van Heesch
Capgemini Germany

uwe@vanheesch.net

Stefan Sobernig
WU Vienna, Austria

stefan.sobernig@wu.ac.at

Peter Sommerlad
Hochschule für Technik,
Rapperswil, Switzerland

peter.sommerlad@hsr.ch

Martin Filipczyk
paluno: The Ruhr Institute for

Software Technology, Germany
martin.filipczyk@paluno.uni-

due.de

Alexander Fülleborn
University Duisburg-Essen

alexanderfuelleborn@hotmail.de

Angelika Musil & Jürgen
Musil

Vienna University of Technology
{angelika,jmusil}@computer.org

ABSTRACT
Architectural software patterns capture successful designs for re-
curring problems in software architecture. For the first time, a
workshop in the tradition of the software-pattern conference se-
ries (e.g. PLoP, EuroPLoP) was held jointly with the European
Conference on Software Architecture (ECSA 2014) in Vienna,
Austria. The main objective of this workshop called MiniPLoP
was to bring software architecture researchers closer to the pat-
tern community and to introduce the writers’ workshop format to
them. Writers’ workshop at PLoP conferences provide authors of
pattern papers with high-density feedback given by peers within
a limited timeframe. In addition, our workshop provided a forum
to reflect on the state of software architecture patterns and to dis-
cuss advances pattern research. This report contains an extended
keynote abstract and summaries of the papers discussed during
the workshop.

1. PREFACE
Patterns of software architecture are an important tool in soft-
ware architectural design [1]. They can be observed in nearly ev-
ery software architecture, even where the architects did not know
they were using them. Papers and books on architecture patterns
were first published nearly 20 years ago [2], and have been widely
used. Architecture patterns continue to be an important area of
research and practice, and have proven their worth for capturing
and conveying architectural design knowledge and decisions.

Since 1994, the Pattern Languages of Programs conference (PLoP)
has been held annually to bring together pattern authors for de-
veloping and improving (textual representations of) patterns in
the computer science domain. Since then, many other PLoP con-
ferences emerged, most importantly the European Conference on
Pattern Languages of Programs (EuroPLoP), starting in 1996.
The domains of the patterns submitted to *PLoP conferences
vary, but software architecture has always been one of the ma-
jor domains.

MiniPLoP was held jointly with the European Conference on
Software Architecture (ECSA 2014) on August 25, 2014. The
aims were to bring researchers in the software architecture field
closer to the pattern community, to reflect on existing architec-

tural software patterns, changing patterns and emerging patterns,
and to advertise the writers’ workshop format to to the software
architecture research community. The writers’ workshop format
is adapted from the workshops of literary circles to provide highly
concentrated feedback to authors [6]. At *PLoP conferences, the
format has been extensively used to improve pattern writings, as
well as other writings associated with patterns, such as research
papers on the application of patterns.1

Apart from an introduction of *PLoP conferences and the writers’
workshop format, MiniPLoP featured a keynote talk by Peter
Sommerlad, and writers workshop sessions on four selected paper
submissions. This report provides an extended abstract of the
keynote and short summaries of all papers discussed during the
workshop.

The organizers would like to thank the participating authors and
non-author participants who contributed to the writers’ workshop
for providing their material for discussion and for giving construc-
tive feedback to others. Our special thanks go to Peter Sommer-
lad for giving an inspiring keynote presentation. Additionally, we
thank Paris Avgeriou and Uwe Zdun, the ECSA 2014 chairs, for
supporting the workshop.

August 2014,

Neil Harrison
Uwe van Heesch
Stefan Sobernig

2. HOW PATTERNS SHAPED MY LIFE
In his keynote talk, Peter Sommerlad reflected on his personal
history with Patterns and the Pattern community.

In the late 1980s, when Peter learned about C++ as a C expert,
he liked the possibility to directly model abstract data types with
classes, but couldn’t get his head around the good uses of C++’s
keyword virtual to introduce dynamic polymorphism. While

1See also www.europlop.net for some background on the writers’
workshops held at EuroPLoP.

http://www.europlop.net/content/writers-workshops

working at Siemens from 1990 on, he got in contact with early
drafts of Erich Gamma’s PhD thesis and he also used Erich’s and
André Weinand’s application framework ET++. Both of these
experiences were an eye opener for Peter to better understand
what object-orientation is about and how to make useful applica-
tion of C++’s virtual keyword. He then gave a lot of OO courses
using Design Patterns [7], like Command, Template Method,
Strategy and Composite to motivate object-oriented design
and development.

That contact with Design Patterns before the seminal book [7]
was published and the collaboration with his Siemens colleagues
led to POSA 1 [2]. Among many influencers, Jim Coplien (Cope)
was the one who taught the Siemens POSA team the meaning
and value of forces in a pattern description. His influence heav-
ily shaped POSA’s 2nd generation pattern format that inspired
many other pattern authors with honest pattern descriptions that
clearly show the applicability of a pattern through its forces as
well as its limitations through its liabilities.

A personal reflection of a POSA author could not be without a re-
flection on POSA’s Reflection pattern. In addition to language-
supported reflection mechanisms, a Do-It-Yourself approach, as
described patterns like Type Object, Property List, or Any-
thing remains to be a valuable element in a developer’s toolbox.

In addition to technical proficiency, patterns also inspired the pat-
tern community that is celebrating its 20th anniversary this year
with the 21st Pattern-Languages of Programming (PLoP) confer-
ence. Being part in this community gave Peter the opportunity to
meet and discuss with many thought leaders of the software com-
munity, especially OO and Agile people, over the past 20 years.
Peter is very thankful for the learning experience and inspiration
he gained from the community at PLoP conferences. In a per-
sonal view, he learned to give and receive honest and constructive
feedback through the PLoP’s writer’s workshops and shepherding;
the latter both as a author (sheep) and coach (shepherd). Digging
out concepts of a solution from a concrete design, as needed in
pattern writing, helped hone his abstraction skills.

There are some regrets about what happened with patterns, in
general, and POSA 1 [2] patterns, in particular. For example, the
POSA authors weren’t critical enough about Singleton, which
turned out to become an anti-pattern once better understanding
its implications; especially in the context of concurrent and par-
allel systems. Another regret of Peter is that POSA 1 did not
separate a multi-tier architecture from the Layers pattern. This
is because a multi-tier architecture does not get the abstraction
and reuse benefits promised by Layers. What also happened
with patterns and pattern-oriented software architectures espe-
cially was that many more people could now claim to be able to
act as a software designer and architect. This ability often adds
accidental complexity leading to many too complicated systems.
He would like to see architects addressing simplicity in system
designs as an overall design goal much more deliberately than it
is today.

In the late 1990s, Peter moved to Switzerland to take over a small
team from Erich Gamma in a small IT company after Erich left
for founding the OTI (later IBM) research lab in Zurich. Peter
grew that team again and created among other things security
infrastructures for the Swiss banking and financial information
industry. The experiences from this security-sensitive application
domain led to his contribution to Security Patterns published in
2004 [16]. In between, Peter suffered his personal Y2K problem

by being hit by a severe illness that took him almost up to 2004 for
treatment and recovery therefrom. After that, he started a new
live as professor for computer science at FHO HSR Rapperswil.
He currently teaches patterns and C++ and continues to utilize in
his own lectures and projects the lessons patterns and the pattern
community taught him.

3. WORKSHOPPED PAPERS
This section contains summaries of the papers discussed at Mini-
PLoP, in chronological order of discussion.

3.1 SIS Pattern for Collective Intelligence Systems
Collective intelligence (CI) is an established phenomenon researched
in several fields like sociology, biology, political science and eco-
nomics [11]. Stigmergy is known as a coordination mechanism
which provides computational systems with effective bottom-up,
environment-mediated coordination capabilities [15].

Context. People organize themselves in collectives like groups,
organizations, communities and societies for their common/mutual
benefit. If people share certain knowledge and information, the
collective will get more effective and efficient, which vice versa
benefits each individual.

Problem. There exists an information communication problem,
where knowledge and information are distributed among individ-
uals and thus are difficult to access on a collective level.

The problem is affected by the following forces:

1. Lack of structured coordination of collective action of users.

2. The information transfer (quality, timeliness) depends on
the individual users and, therefore, is inconsistent and not
well integrated.

3. Each user is situated in a specific context and, thus, has low
awareness about available remote information from other
contexts, its status, relevance and sources.

Solution. A Stigmergic Information System (SIS) consists of (1)
human agents as proactive components, (2) a single, homoge-
neous, coordination artifact network as a passive component, and
(3) a computational coordinator system as a reactive compo-
nent [13, 12]. The SIS architecture (see Figure 1) creates a per-
petual feedback loop between agent base (1) and coordination
infrastructure (2,3), by instrumenting the actors’ contributions to
stimulate a subsequent reaction by other actors, resulting in a
stigmergy-like process.

The actor base consists of human agents, who independently
engage with the coordination environment that is formed by the
artifact network and the coordinator system.

The artifact network consists of interlinked coordination arti-
facts, whereby each coordination artifact consists of a set of pre-
defined attributes which is the same for all artifacts. Actors can
create artifacts, modify the values of their attributes, and link
artifacts together using artifact links.

The coordinator system is a reactive/adaptive computational
system, which uses triggers to propagate changes of the coordi-
nation artifacts to actors. Triggers raise awareness among actors

about ongoing activities in the artifact network, and subsequently
stimulate them to provide more contributions to an artifact.

1.

2.

3.
Coordinator System

(reactive)

Artifact Network
(passive)

Actor Base
(proactive)

Figure 1: SIS architecture overview with stigmery cycle
(adapted from [12]).

Example: Facebook. The coordination artifact in Facebook is
the user profile. The actor base comprises people that can be
described with the organizational structures and processes of a
society. Each actor is the owner of only one profile. Users pri-
marily contribute to their own profile pages, but they can also
contribute directly to information shared by other users or their
profile pages. Artifact links are represented by the friend rela-
tionship between two profiles and are defined by the actors.

Benefits. The SIS pattern has the following advantages:

• Harnessing the wisdom of crowds: The aggregated knowl-
edge / information of a group of actors is better than knowl-
edge / information of a single actor.

• Division of labour: Each artifact evolves by additive contri-
butions and modifications of different actors.

Future Work. Based on the feedback of MiniPLoP participants,
the following areas have been identified for future work:

• Extending the descriptions of examples and scenarios to in-
clude workflows making the abstract elements and processes
more tangible.

• Exploring the relationships of the SIS pattern to other al-
ready existing architecture patterns (e.g. blackboard pat-
tern), their commonalities, and differences.

• Describing the individual solution elements (i.e. coordina-
tion artifact, trigger) in greater detail and mapping them to
well-known examples.

Paper title
The Stigmergic Information System Architecture Pattern for
Socio-Technical Collective Intelligence Systems

Authors
Angelika Musil, Juergen Musil, and Stefan Biffl

3.2 Software Architecture Pattern Morphology
Software architecture patterns assist in the understanding of the
structure of the architecture and the rationale of the decisions
behind the architecture, and are found in virtually all complex

systems [8]. As a system evolves, its architecture changes; this
includes changes to the architecture patterns [1]. The changes
make it more difficult to find the architecture patterns, greatly
reducing their benefit. However, some architecture patterns are
structurally similar to each other. Certain types of changes to
a pattern may result in the pattern changing to another closely
related pattern. Where this occurs, it helps preserve the benefits
of using architecture patterns.

For example, the Client-Server pattern [1] consists of a com-
ponent called the Server, which receives requests and performs
some service in response. The other component is the Client,
which initiates requests to the Server. The Client and Server
usually run on different computers. There are typically multiple
Clients, which do not have to be homogeneous. Now consider
the Broker pattern. This pattern also consists of Clients and a
Server, but communication between them is mediated by a Bro-
ker component between them. One powerful use of the Broker
pattern is to manage multiple identical Servers, forwarding re-
quests from Clients as Servers become available. Multiple Servers
can increase capacity and/or improve availability of the system.
A system using the Client-Server pattern might easily change
by the addition of a mediating component, causing the Client-
Server pattern to change to the Broker pattern.

We have identified several pairs of closely related patterns, and
describe the structural changes needed to change one pattern to
the other. See [9] for a description of the types of structural
changes that architectural patterns can undergo.

If a pattern is to change to another, it is not sufficient that there
is a set of minor structural changes leading from one pattern to
another. There must be a plausible external motivation to make
those changes. The changes must make sense from a requirements
point of view. In the Client-Server to Broker morphing de-
scribed above, the addition of a mediating Broker component is
entirely plausible when one considers the typical evolution of such
a system.

For each pattern morphing we identified, we considered whether
there is a plausible motivation to make such a change to a sys-
tem using the original architecture pattern. In most cases, we
found a plausible reason for such a change, which tends to sup-
port the pattern morphing. One case was notable for its lack of
a reason: The Active Repository and Blackboard patterns
are somewhat structurally similar; an Active Repository could
become a Blackboard with the addition of one or more compo-
nents. However, they are somewhat different in their intent, and
we could not see an obvious reason for this morphing. Therefore,
we considered this to be not a legitimate morphing.

The pattern morphing paths ease system extension in that they
form natural system evolutionary paths. If the system changes
from one pattern to another, the pair of morphing patterns form
a design path. This is in fact following the sequence of pattern
application found in pattern languages.

We intend to further this research through studies of pattern mor-
phing in experimental settings. In addition, we hope to find ex-
amples of pattern morphing in industrial settings. We also intend
to study the body of architecture patterns further to identify a
comprehensive set of architecture pattern morphings.

Paper title
Software Architecture Pattern Morphology

Authors
Neil B. Harrison, Paris Avgeriou, and Uwe Zdun

3.3 Systematic Selection of Architectural Patterns
Even if the requirements for a software system are stated clearly,
the design of a suitable software architecture that meets these
requirements remains a challenging task for the software archi-
tect since both functional and quality requirements have to be
considered. Reusing best practices and common knowledge cap-
tured in architectural patterns has shown to be valuable in this
context. However, it is not always trivial to select the appropri-
ate pattern for a given problem, e.g. because of interdependencies
between benefits and liabilities of multiple patterns. Many exist-
ing approaches for deriving software architectures from a set of
requirements therefore rely on skilled and experienced software
architects.

We present a process to select appropriate architectural patterns [2,
1] supporting the design of a software architecture that meets its
functional and quality requirements. To bridge the gap between
requirements and software architecture, we established a question
catalog that relates questions targeting the requirements and their
answers to architectural patterns.

Prior to applying our process, the software engineer has to model
requirements using problem diagrams [10], each being an instance
of a certain problem frame. In a first step, a matching problem
frame has to be found for each problem diagram given as input.
From the set of all questions within the question catalog, the sub-
set of questions that are related to the identified problem frames
are instantiated and presented to the architect. Based on the
answers given to the questions, appropriate patterns are filtered
from the set of all patterns. The architect can then either select a
pattern and finish the process or continue the process by answer-
ing open questions that are follow-ups to the initial questions.
Finally, we envision the application of optimization techniques to
rank patterns according to their benefits and liabilities in relation
to the answers given in former steps. In this way, the architect is
supported in the final decision making on an appropriate pattern.

In summary, we provide a problem-oriented approach for select-
ing architectural patterns addressing functional and quality re-
quirements. The process we propose connects requirements and
software architecture, supports even less experienced software ar-
chitects in the design of architectures through a guided pattern
selection process, and provides support for decision making and
documentation of design decisions and their rationale.

There are several improvements to our process that we aim at
realizing in the future, partially based on the constructive feed-
back we received during the MiniPLoP workshop. Currently, we
are elaborating the relationships between architectural tactics and
patterns and integrate tactics into our process. We have already
evaluated the proposed process on a subset of the CoCoME ex-
ample [14], but we will extend the evaluation to cover the full
example. Further, we plan to conduct controlled experiments as
well. Since we identified several steps that are suited for au-
tomation, we are currently developing tool support that guides
the architect through our process. Finally, we plan to embed the
presented process into our GenEDA2 method, as a first step to
generate architectural alternatives from quality requirements.

2 http://www.geneda.org/

Paper title
Towards Systematic Selection of Architectural Patterns with
Respect to Quality Requirements

Authors
Azadeh Alebrahim, Stephan Faßbender, Martin Filipczyk,
Michael Goedicke, and Maritta Heisel

3.4 Problem-oriented Pattern Retrieval
It is still a challenge for a software engineer to handle patterns in
her daily practical work. At first, it is still difficult for a software
engineer in her role of a pattern consumer to retrieve and to apply
a suitable pattern for the problem at hand. Secondly, it is difficult
for a software engineer in her role of a pattern provider to develop
new patterns, being sure that such a pattern does not yet exist
already. To support domain experts to take advantage of analysis
patterns as well as design patterns across expert domains with-
out leaving their field of expertise, we provide our approach of
Problem-oriented Pattern Management Methodology (ProPMan).
ProPMan consists of a set of methods that serve the mentioned
requirements of finding, understanding and applying patterns.

In this paper, we present a component of ProPMan that we devel-
oped to offer tool-supported cross-domain pattern retrieval, the
Problem-oriented Pattern Retrieval (ProPRet) method. ProPRet
consists of a process description as well as a tool implementation.
The method makes use of a graph matching approach, applied to
graphs we call Problem-Context Pattern (PCP) graphs. It enables
a software engineer in her role of a pattern consumer to perform
a similarity search for the artefacts that represent the problem
part of patterns called problem-context patterns. Problem-context
patterns are the output of applying another ProPMan method,
the Problem-oriented Pattern Generation (ProPGen) method, to
domain-specific UML models. See Figure 2 for an overview.

Figure 2: Conceptual overview of the ProPRet approach.

In the ProPRet similarity search approach, the prerequisite is that
a pattern consumer generates a problem-context pattern from a
problem-bearing, domain-specific UML model beforehand. In or-
der to do this, he or she applies the ProPGen method and hence
provides such a problem-context pattern as a search key. This
problem-context pattern is then compared with problem-context
patterns that have so-named “solution patterns” assigned and
which both have been stored in a pattern library by a software en-
gineer in his or her role of a pattern provider - using ProPGen as
well. The result list of a pattern retrieval run contains items that
are still cross-domain, as these items are pairs of generic problem-
context and solution patterns. However, ProPRet enables domain
experts to understand and hence compare the retrieval results by

transforming them to a domain-specific context - by providing
previews on solution pattern instances.

For the ProPRet similarity-search approach, we introduce a sim-
ilarity metric for PCP graphs based on the findings described in
Dijkman et al. [3]. Furthermore, to give tool support for Pro-
PRet and also for the remaining methods of our overall ProPMan
methodology, we use the Eclipse framework. For the compari-
son of problem-context patterns, we use the Epsilon Framework
as an extension of Eclipse. Epsilon is a family of languages and
tools for code generation, model-to-model transformation, model
validation, comparison, migration and refactoring that works out-
of-the-box with EMF and other types of models. We are currently
implementing an Epsilon comparison language (ECL) program to
realize the ProPRet retrieval tool.

In the context of the overall ProPMan methodology, we presented
an initial draft of an approach for cross-domain reuse of prob-
lem solutions via analysis patterns before [4]. A proposal for
problem-oriented documentation of design patterns as a first draft
of another member of the ProPMan method family, namely the
Problem-oriented Pattern Extension (ProPExt), has been pub-
lished in [5].

Paper title
A Method for Cross-Domain Problem-oriented Pattern Re-
trieval

Authors
Alexander Fülleborn and Maritta Heisel

4. REFERENCES
[1] P. Avgeriou and U. Zdun. Architectural patterns revisited:

A pattern language. In Proc. of the 10th European
Conference on Pattern Languages of Programs
(EuroPloP’05), pages 1–39. Hillside, 2005.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System
of Patterns. John Wiley & Sons, 2000.

[3] R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Graph
matching algorithms for business process model similarity
search. In Proc. of the 7th International Conference on
Business Process Management (BPM’07), volume 5701 of
LNCS, pages 48–63. Springer, 2009.

[4] A. Fülleborn and M. Heisel. Methods to create and use
cross-domain analysis patterns. In Proc. of the 11th
European Conference on Pattern Languages of Programs
(EuroPLoP’06), pages 427–442. Universitätsverlag
Konstanz, 2007.

[5] A. Fülleborn, K. Meffert, and M. Heisel. Problem-oriented
documentation of design patterns. In Proc. 12th
International Conference on Fundamental Approaches to
Software Engineering (FASE’09), number 5503 in LNCS,
pages 294–308. Springer, 2009.

[6] R. P. Gabriel. Writers’ Workshops & the Work of Making
Things: Patterns, Potery Addison-Wesley, 2002.

[7] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.
Design Patterns – Elements of Reusable Object-Oriented
Software. Addison Wesley Professional Computing Series.
Addison-Wesley, 1994.

[8] N. B. Harrison and P. Avgeriou. Analysis of architecture
pattern usage in legacy system architecture documentation.
In Proc. 7th Working IEEE/IFIP Conference on Software
Architecture (WICSA’08), pages 147–156. IEEE, 2008.

[9] N. B. Harrison and P. Avgeriou. How do architecture

patterns and tactics interact? A model and annotation. J.
Syst. Softw., 83(10):1735–1758, 2010.

[10] M. Jackson. Problem Frames: Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[11] T. W. Malone, R. Laubacher, and C. Dellarocas. Harnessing
crowds: Mapping the genome of collective intelligence.
Working Paper 2009-001, MIT Center for Collective
Intelligence, 2009.

[12] J. Musil, A. Musil, and S. Biffl. Towards a
coordination-centric architecture metamodel for social web
applications. In Proc. of the 8th European Conference on
Software Architecture (ECSA ’14), volume 8627 of LNCS,
pages 106–113. Springer, 2014.

[13] J. Musil, A. Musil, D. Winkler, and S. Biffl. A first account
on stigmergic information systems and their impact on
platform development. In Companion Proc. of the Joint
10th Working IEEE/IFIP Conference on Software
Architecture & 6th European Conference on Software
Architecture (WICSA/ECSA’12), pages 69–73. ACM, 2012.

[14] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil. The
Common Component Modeling Example: Comparing
Software Component Models. Springer, 2008.

[15] A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva.
Cognitive stigmergy: Towards a framework based on agents
and artifacts. In Proc. of the 3rd International Conference
on Environments for Multi-Agent Systems (E4MAS’06),
volume 4389 of LNCS, pages 124–140. Springer, 2007.

[16] M. Schuhmacher, E. Fernandez-Buglioni, D. Hypertson,
F. Buschmann, and P. Sommerlad. Security Patterns:
Integrating Security and Systems Engineering. Wiley Series
in Software Design Patterns. John Wiley & Sons, 2000.

	Preface
	How Patterns shaped my Life
	Workshopped Papers
	SIS Pattern for Collective Intelligence Systems
	Software Architecture Pattern Morphology
	Systematic Selection of Architectural Patterns
	Problem-oriented Pattern Retrieval

	References

