
Continuous Adaptation Management in
Collective Intelligence Systems

Angelika Musil1,2[0000−0002−1025−1626], Juergen Musil1[0000−0002−2163−3603],
Danny Weyns2,3[0000−0002−1162−0817], and Stefan Biffl1

1 Christian Doppler Lab SQI, Inst. of Inf. Systems Engineering, TU Wien, Austria
{angelika,jmusil}@computer.org, stefan.biffl@tuwien.ac.at

2 Dep. of Comp. Science, KU Leuven, Belgium / Linnaeus University, Sweden
danny.weyns@kuleuven.be

Abstract. Collective Intelligence Systems (CIS), such as wikis and so-
cial networks, enable enhanced knowledge creation and sharing at orga-
nization and society levels. From our experience in R&D projects with
industry partners and in-house CIS development, we learned that these
platforms go through a complex evolution process. A particularly chal-
lenging aspect in this respect represents uncertainties that can appear
at any time in the life-cycle of such systems. A prominent way to deal
with uncertainties is adaptation, i.e., the ability to adjust or reconfigure
the system in order to mitigate the impact of the uncertainties. However,
there is currently a lack of consolidated design knowledge of CIS-specific
adaptation and methods for managing it. To support software architects,
we contribute an architecture viewpoint for continuous adaptation man-
agement in CIS, aligned with ISO/IEC/IEEE 42010. We evaluated the
viewpoint in a case study with a group of eight experienced engineers.
The results show that the viewpoint is well-structured, useful and appli-
cable, and that its model kinds cover well the scope to handle different
CIS-specific adaptation problems.

Keywords: Collective intelligence systems · Adaptation · Architecture
viewpoint

1 Introduction

In the last decades, Collective Intelligence Systems (CIS), such as wikis, social
networks, and media-sharing platforms, enable enhanced knowledge creation and
sharing at organization and society levels alike. Today, CIS are widely adopted
and influence a large number of people in their daily lives. Established CIS
platforms have a longevity well over a decade and beyond. Consequently, CIS
represent a significant system domain to research from different perspectives.

A CIS is a complex socio-technical multi-agent system that realizes environment-
mediated coordination based on bio-inspired models in order to create a perpet-
ual cycle of knowledge and information aggregation and dissemination among its
agents (actors) [12, 18]. The system is heavily driven by its actors who continu-
ously contribute content to a network of information artifacts [15] (CI artifacts),



2 A. Musil et al.

which represents the coordinative substrate and is hosted by an adaptive sys-
tem layer that handles processing [17, 23] of aggregated content (monitoring,
analysis, and information filtering) and information dissemination (using rules,
triggers, and notifications). This feedback loop between the actor base and the
computational system is an essential feature of a CIS and must be carefully de-
signed and maintained and may not be underestimated.

From extensive experience in R&D projects with industry partners and in-
house CIS development, we learned that these platforms typically go through
a complex evolution process during which they mature, leading to a significant
increase of user base size and accumulated content. Thereby, a particular chal-
lenge for software architects represents the multiple inherent uncertainties which
continuously affect the system. In particular, when designing CIS the available
knowledge is not adequate to anticipate all potential changes due to dynamics
in the system context, such as changes of conditions, requirements, resources,
or the emergence of new requirements and factors to consider. One way to deal
with and mitigate the impact of uncertainties is to design systems that adapt or
can be adapted when the missing knowledge becomes available [10].

Recent efforts to support software architecture aspects of CIS comprise an
architecture pattern as foundation of CIS [13], a reference architecture [17], an
architecture framework [14], and an architecture description language [3]. A par-
ticular challenging aspect with regard to evolution represents adaptation of CIS,
which is a multi-dimensional problem that spans the full life-cycle of such plat-
forms. However, the aspect of adaptation has not yet been investigated from a
CIS architecture perspective. Traditional adaptation approaches that are appli-
cable to common software system concerns in CIS are not directly applicable
to CIS-domain-specific concerns. Examples include adaptation elements in the
information dissemination phase of the feedback loop, when in the CIS life-cycle
should adaptation activities be performed, or how to address uncertainties ef-
fecting the significant CIS perpetual cycle. Based on experiences from stakehold-
ers in industry and our own experiences with studying and developing CIS, we
identified a lack of consolidated design knowledge about the adaptation solution
space specific to these systems. Current practice in the CIS domain showed that
adaptation in CIS is added in an ad-hoc manner as a reaction to certain major
incidents, such as rapid decrease of user activities or spam information gener-
ated by bots. However, incorporating adaptation mechanisms in an ad-hoc way
may lead to unpredictable consequences on the system and unintended system
behavior. Furthermore, there is a lack of methods to support software architects
to address CIS-specific adaptation with reasonable effort and systematically de-
sign, describe and plan it.

To address these challenges, we study the what, when, and how of continu-
ous adaptation management in the CIS domain. Our goal is to provide software
architects with CIS-specific adaptation decision-making and management ca-
pabilities during the evolution of a CIS software architecture. To achieve this
goal, we applied an empirically grounded research approach. We started with a
survey of existing CIS to identify if adaptation is a relevant concern and what



Continuous Adaptation Management in Collective Intelligence Systems 3

kind of adaptation is handled in practice. In addition, we reviewed literature
regarding research work on adaptation-related concerns and specifics with focus
on CIS. Next, we conducted a series of in-depth interviews with companies that
have successfully built and operate CIS in order to identify their problems and
challenges and to collect best practices on adaptation management in CIS. The
collected data provided input for the identification of relevant stakeholders, their
concerns during architecture design and requirements for architectural models to
address these CIS-specific concerns. Based on the consolidated data and synthe-
sized knowledge, we developed a novel architecture viewpoint, which provides an
adaptation-specific view on CIS architectures and is implementation agnostic.
The Continuous Adaptation Management Viewpoint (CIS-ADAPT) comprises
four model kinds and aims at supporting software architects across the CIS
life-cycle with a particular focus on the adaptation areas of modeling, scoping,
binding time, and evolution of CIS. To evaluate the viewpoint’s applicability and
usefulness, we conducted a case study with eight experienced engineers.

The remainder of this paper is structured as follows: Section 2 summarizes
related work. Section 3 describes the research question and methodology we fol-
lowed. Section 4 presents the proposed architecture viewpoint with its model
kinds. Section 5 describes a case study we used to evaluate the viewpoint’s ap-
plicability and usefulness. Finally, Section 7 concludes and suggests future work.

2 Related Work

To the best of our knowledge, CIS-specific adaptation has not been the focus of
previous research work. Hence, we discuss a selection of representative work on
architecture-based adaptation and related architecture approaches in general.

Architecture-based adaptation [16, 9] is an established approach to engineer
adaptive systems that focuses on the central role of software architecture in
such systems through abstraction and separation of concerns. Two fundamental
concerns of adaptive systems are domain concerns that are handled by the man-
aged subsystem (that realizes the system functionality) and adaptation concerns
that are handled by the managing subsystem (i.e., quality concerns about the
managed subsystem) [25]. A key approach to realize the managing subsystem is
by means of a so called MAPE feedback loop (Monitor-Analyze-Plan-Execute)
[8]. One well-known architecture-based self-adaptive framework is Rainbow [5].
This approach uses an abstract architectural model to monitor software sys-
tem run time specifications, evaluates the model for constraint violations, and
if required, performs global and module-level adaptations. The reference model
FORMS [26] (FOrmal Reference Model for Self-adaptation) provides a vocabu-
lary for describing and reasoning about the key architectural characteristics of
distributed self-adaptive systems and their concerns.

To support reuse of known solutions, [27] consolidated a number of design
approaches for decentralized control in self-adaptive systems in form of MAPE
patterns. The authors discussed drivers for the design of self-adaptive systems
when choosing one of these MAPE patterns (e.g., optimization, scalability, ro-



4 A. Musil et al.

Expert Interviews

Data 

Collection

Data 

Analysis

Coding 

Schema

CIS Survey

Transcripts

Synthesis Evaluation

Data Forms

Recordings

Notes

Analysis

Case Study

Recordings, 

Survey, Interviews

Result Discussion

Continuous 

Adaptation 

Management 

Viewpoint

Continuous 

Adaptation 

Management 

Viewpoint

RQRQRQ

Fig. 1. Applied multi-phase research method

bustness). [19] presented twelve adaptation-oriented design patterns that are
collected from literature and open sources projects. These patterns are clustered
around monitoring, decision-making, or reconfiguration. The patterns are at the
level of software design in contrast to our architecture-centric perspective that
we adopt in this work.

One architecture viewpoint related to our work is the variability viewpoint
presented in [4]. However, the focus of that viewpoint was on enterprise software
systems and variability in general. Furthermore, [24] presented an approach to
augment an architecture viewpoint with a particular variability viewpoint. Al-
though both viewpoints follow ISO/IEC/IEEE42010 [7], they focus on variability
concerns but do not consider binding times and system domain specifics.

In conclusion, the proliferation of domain-specific adaptation approaches con-
tinues, since the high degree of domain knowledge and complexity widens the
gap between general purpose adaptation approaches and the required additional
efforts of practitioners to make these approaches work and sustainably manage
in specific application domain like CIS.

3 Research Methodology

The main objective of this research is to improve the architectural understand-
ing of CIS and in particular to consolidate design knowledge on adaptation in
CIS in order to support software architects to handle it. Based on experiences
of stakeholders in the field that built and operate CIS and our own experiences
with studying and developing CIS, we identified the following research question:
What are architectural principles to handle CIS-specific adaptation along its life-
cycle and how can we codify these principles in a systematic way to make them
useful and applicable for software architects?

To answer this research question, we applied an empirically grounded re-
search method, shown in Fig. 1. We performed a survey of existing CIS and a
series of semi-structured interviews with software architects and senior software
engineers of different CIS companies. In the next step the analyzed results and
derived knowledge were consolidated in form of an architecture viewpoint for
continuous adaptation management in CIS following the ISO/IEC/IEEE 42010



Continuous Adaptation Management in Collective Intelligence Systems 5

Table 1. Identified adaptation types with examples of elements and their option space

Adaptation Type Adaptation Element Examples Element Adaptation Option Examples
Role & privilege Editor, administrator, moderator
Application client Desktop, web, app, messenger
Artifact attribute Category, review, votes, tags, comments, actor views
Interaction rule Adding, commenting, up-voting, tagging

Monitoring mechanism Hot topics monitoring, abnormal behavior monitoring
Information filtering mechanism Recommender system, artifact changes, actor activities

Trigger mechanism Email, app message, on-site notification
Dissemination rule  Monthly digest, daily report, weekly recommendations

Dissemination

Actor

Aggregation

Processing

standard [7]. Finally, we evaluated the usefulness and applicability of the pro-
posed viewpoint by conducting a case study with experienced engineers who
used the viewpoint to perform adaptation-specific design tasks in CIS key el-
ements. More details, generated material and results of the research activities
are available online [11]. In the remainder of this section, we briefly summarize
the survey and interviews. The viewpoint and its evaluation are presented in the
following sections.

CIS Survey. To investigate different types of CIS-specific adaptation that
address key elements and processes in various CIS application contexts, we con-
ducted a system survey based on a defined protocol describing the search strat-
egy, selection and system quality assessment criteria, data extraction process,
and data analysis methods. In total, we identified around 100 different CIS based
on searches from different sources, such as the web-traffic rankings from Alexa3,
Wikipedia, digital libraries of scientific work, and domain experts from research
and industry. We selected 30 CIS based on the quality of the available material
to assess the system, including design documentation, user guide, and API spec-
ification. We collected data by exploring interaction workflows from an end-user
perspective and reviewing available system design and documentation material.
Based on subsequent analysis of the collected data and material, we derived
initial information about characteristic adaptation points in CIS key elements
and processes. Table 1 summarizes the main outcome of the survey in terms of
adaptation types in CIS and their refinements.

Expert Interviews. Based on the survey results, we conducted interviews
with 10 technical stakeholders covering a variety of roles in CIS engineering,
e.g., CTO, software architect, senior engineer, and product manager. The par-
ticipants come from different Austrian and US companies and organizations that
operate a CIS platform in various application domains including medical, soci-
etal networking, employer/platform review & rating, and video/music sharing.
The participants had 2-10 years experience with CIS engineering and operation.
The goal of the interviews was to obtain additional data about stakeholders and
adaptation concerns, rationales for adaptation design, and life-cycle aspects. The
main selection criteria for participants was their experience in the CIS domain.
By applying the guidelines by Hove and Anda [6] and Seaman [22], we designed

3 http://www.alexa.com/topsites/global (last visited at 02/25/2019)



6 A. Musil et al.

semi-structured interviews with a combination of specific and open-ended ques-
tions (e.g., What are the features of your system that have changed over time?
What was your intention of these changes?). We asked them about the differ-
ent phases they have gone through since the beginning of their software plat-
form and challenges and difficulties they faced during design and engineering
activities. The last part dealt with their experiences with respect to platform
evolution and CIS-specific adaptation, adaptation management challenges and
practices as well as the decision-making process. Each interview took about 50
minutes and was recorded for analysis. For data analysis, we applied coding [21]
and grounded theory [2] to transform, structure, and analyze the interview tran-
scripts. The findings of the interviews confirmed and complemented the previous
results from the survey and revealed how designing and planning CIS-specific
adaptation over the system’s life-cycle was managed.

One particular insight is that in later stages changes to adaptation are han-
dled less often than in the beginning and only in a conservative way in order to
prevent negative effects on the system’s behavior and success. So it is essential
to consider the right timing for a CIS’s evolution and when to introduce new
adaptation elements and options. Changes in CIS-specific elements can have a
significant impact on the behavior of the system and consequently on the be-
havior of the actors.

4 Continuous Adaptation Management Viewpoint

From the data collection and analysis discussed in the previous section, we de-
fined the architecture viewpoint for continuous adaptation management in collec-
tive intelligence systems (CIS-ADAPT) which unifies CIS-specific aspects with
established adaptation approaches. The viewpoint frames the essential concerns
of stakeholders with an interest in handling CIS-specific adaptation across the
system’s life cycle, starting from its inception and during its operation. The
viewpoint defines a set of four model kinds for identifying, designing and real-
izing adaptation in CIS key elements. It is important to note that the focus of
this viewpoint is on CIS-specific adaptation and its impact on the system archi-
tecture. As such, architects may use additional architectural approaches, such as
additional viewpoints or patterns, to deal with adaptation in traditional software
system elements and other stakeholder concerns. The architecture viewpoint is
structured using the template of the ISO/IEC/IEEE 42010 standard [7].

Table 2 shows an overview of the identified stakeholders and their adaptation
concerns addressed by this viewpoint. This viewpoint particularly focuses on the
technicalities of adaptation management in CIS, which are no direct concerns
of system users, who contribute continuously to it. Thus the users are no stake-
holders in terms of this viewpoint, but they are certainly affected by the design
decisions made by applying this viewpoint.

The viewpoint comprises four model kinds presented in Tables 3 and 4: adap-
tation types, adaptation definition, adaptation in time and adaptation workflow.



Continuous Adaptation Management in Collective Intelligence Systems 7

Table 2. Continuous Adaptation Management Viewpoint for CIS - Overview

Overview: The architecture viewpoint deals with the main stakeholder concerns re-
lated to the continuous management of CIS-specific adaptation and defines models
for the identification, design and realization of adaptation elements and their space
of possible options across the system’s life-cycle. The models show the relevant archi-
tectural information that is essential to guide a successful preparation for anticipated
changes in the system’s environment or requirements.

Stakeholders:
Architect(s) who design and describe the CIS architecture and identify the common-
alities and the adaptation space in the system.
Owner(s) who define the CIS’s purpose and business goals and operate it to provide
the service to the users.
Manager(s) who are responsible for overseeing CIS operation.
Analyst(s) who assess the performance of a CIS in terms of quality criteria.

Concerns:
C1 - Adaptation Identification: How can adaptation be exploited to enhance the op-
eration of a CIS? What are possible adaptation elements in a CIS? What are the
implications of adaptation elements in the design of a CIS?
C2 - Adaptation Management: What options are available to resolve an adaptation
element? What are the effects of different options? What are dependencies between
different adaptation elements and options? When are adaptation elements resolved?
Who is responsible for handling the adaptation and selecting adaptation options?
C3 - Adaptation Evolution: When are adaptation activities be performed in the CIS
life-cycle? How does adaptation influence the CIS evolution?

Adaptation Types Model Kind. This model kind describes the subject
of adaptation, comprising four CIS-specific adaptation types along with adapta-
tion elements: (1) Actor, (2) Aggregation, (3) Processing, and (4) Dissemination,
e.g., an adaptation element of the type Actor is Incentive Mechanism. Concrete
options of this adaptation element can be: awarding badges, up-votes, and likes.
Concrete options for adaptation element Dissemination Rule of type Dissemina-
tion are artifact change reports, weekly digests, monthly personal recommenda-
tions. This model kind supports architects with defining what adaptation types
and adaptation elements are relevant to implement in the context of the specific
CIS-of-interest based on the concretely identified adaptation types.4

Adaptation Definition Model Kind. This model kind describes what
adaptation is. It defines the possible adaptation options of an adaptation ele-
ment, i.e., the adaptation space, each option representing a particular setting
of the element. An adaptation element and its adaptation options are subject
to constraints, i.e., they can exclude one another or may have dependencies,
e.g., only actors with editor role can activate an artifact protection mechanism.
A CIS element adaptation option can be optional or mandatory. Adaptation
is then defined as addressing uncertainties by selecting adaptation options for

4 Gray shaded boxes in model kinds represent links between multiple model kinds.



8 A. Musil et al.

Table 3. Continuous Adaptation Management Viewpoint for CIS - Model Kinds

Model Kinds:
MK1 - Adaptation Types (deals with concern C1): A model that describes where adap-
tation can likely be achieved in a CIS to address uncertainties by identifying potential
points of adaptation in CIS-specific system areas along with possible alternatives.
MK2 - Adaptation Definition (deals with concern C2): A model that clarifies what
adaptation is about in the CIS-of-interest and describes details about the adaptation
elements selected for adaptation, the associated element adaptation space of options
to address particular uncertainties, and what constraints are applied on their relations.
MK3 - Adaptation in Time (deals with concern C3): A model that describes when
adaptation activities are applied by responsible entities and how adaptation evolves
across the CIS’s life-cycle.
MK4 - Adaptation Workflow (deals with concern C2): A model that describes how
the adaptation elements are realized and resolved, and who is responsible for selecting
adaptation options and triggering the changes.

Metamodels:
CIS

Adaptation Type

Actor Role & 

Privilege

is
 o

f

Application

Client

Incentive 

Mechanism

Reputation 

Mechanism

CI Artifact 

Attribute

Information 

Filtering 

Mechanism

Analysis 

Mechanism

Monitoring 

Mechanism

is
 o

f

Trigger 

Mechanism

Dissemination 

Rule

is
 o

f

is
 o

f

Actor Aggregation Processing Dissemination

CI Artifact 

Link

Bot 

Mechanism

MK1 – Adaptation Types

Interaction 

Rule

 

CIS Adaptation 

Type

CIS Element 

Adaptation 

Space

CIS Adaptation 

Element

CIS Element 

Adaptation 

Option
10..*

is of

10..*

is of

Optional

Mandatory

0..1

0..*is

0..1

0..*is

0..1

0..*is

0..1

0..*is

Adaptation 

Rationale

1..*

1..*

motivates

1..*

1..*

motivates

Constraint
0..*

1

subject to

0..*

1

subject to

Dependency

0..*

1

is of

0..*

1

is of

Uncertainty

1..*

1..*

addresses

1..*

1..*

addresses

Exclusion

MK2 – Adaptation Definition

11

has

11

has
 

0..*

1

subject to

0..*

1

subject to

Key: UML

elements according to the adaptation rationales (goals). For instance, a lack of
actor attention for specific artifacts observed during operation (uncertainty) may
be handled by activating an awareness trigger (adaptation option) to increase
contributions to these artifacts (rationale).



Continuous Adaptation Management in Collective Intelligence Systems 9

Table 4. Continuous Adaptation Management Viewpoint for CIS - Model Kinds

Metamodels:

CIS Life-cycle 

Phase

Ramp-upExploration Expansion Stabilization Decline

Kick-startInception Take-off End-of-life

CIS Milestone

1

1

is part of

1

1

is part of

1

1

triggers

1

1

triggers CIS Activity 

Level

Acceleration 

Level

Criticality 

Level

Maturity

Level

1

1
triggers

1

1
triggers

1

1

triggers 1

1

triggers

1

1

triggers

1

1

triggers

1

1

follows

1

1

follows

1

1
follows

1

1
follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1 1

follows

1

1

starts

1

1

starts

1

1

starts

1

1

starts

Adaptation

Activity0..31

uses

0..31

uses

0..*

1

introduces

0..*

1

introduces

Add Activity Remove Activity

10..*

performs

10..*

performs

MK3 – Adaptation in Time

Change Activity

Responsible Entity

Developer Operator System

CIS Adaptation 

Element

CIS Element 

Adaptation 

Option

Responsible Entity

Developer Operator System

Development 

Time (offline)

Run Time 

(online)

Binding Time
11

has

11

has

1

1
binds

option
1

1
binds

option
1

1

binds option
1

1

binds option
Adaptation 

Mechanism

1..*

1..*

analyzes

1..*

1..*

analyzes

 
1

1

binds option
1

1

binds option

MK4 – Adaptation Workflow

0..1

1..*

applies
0..1

1..*

applies

CIS Element 

Adaptation 

Space

CIS Adaptation 

Element10..*

is of

10..*

is of

11

has

11

has

1..*

1..*

selects
1..*

1..*

selects

Adaptation 

Rationale
Uncertainty

0..*

0..*

monitors

0..*

0..*

monitors

1..*

0..*

monitors

1..*

0..*

monitors

0..*

0..* has

0..*

0..* has

Key: UML

Analyses:
A1 - Adaptation Effect Analysis (using MK1 and MK2): Assesses the effects of different
adaptation option selections on the activities of the system and the actor base using
a set of scenarios.
A2 - Adaptation Option Conflict Analysis (using MK2, MK3 and MK4): Reviews the
relations and dependencies between adaptation elements and their spaces of options
that are simultaneously deployed and bound in different life-cycle stages.

Adaptation in Time Model Kind. Grounded on the life-cycle and time-
line model for self-adaptive software systems [1], this model describes when adap-
tation can be applied throughout a CIS’s life-cycle in five phases: (1) Exploration
phase, (2) Ramp-up phase, (3) Expansion phase, (4) Stabilization phase, and (5)
Decline phase. Besides the phases, we identified characteristic milestones that
a CIS can achieve and activity levels to reach. The exploration phase starts
with the inception of the design and building of a first version of the system-



10 A. Musil et al.

of-interest. Then the ramp-up phase is triggered by the kick-start milestone of
the official launch of the system-of-interest. During this phase the CIS can reach
another milestone when the number of active users and generated content sud-
denly takes-off. This take-off is triggered by reaching a certain level of criticality.
Then the expansion phase is triggered by reaching a certain level of acceleration.
The stabilization phase is then triggered by reaching a certain level of maturity.
Finally, the decline phase is triggered by reaching the “end-of-life” point.

Any responsible entity can perform adaptation activities, i.e., add, change, or
remove activities to an adaptation element (by adapting its adaptation options)
in different phases of the CIS’s life-cycle. For instance, the operator introduces a
monitoring mechanism aiming to identify irregular activities in expansion phase.
This activity can be affected by reaching a certain CIS milestone (e.g., take-off
milestone) or activity level (e.g., criticality level). If an option of an adaptation
element is not relevant anymore, a responsible entity can remove it, e.g., the
system may turn off a dissemination rule when user activity is increased over a
period of time.

Adaptation Workflow Model Kind. This model kind describes how CIS-
specific adaptations are realized. The adaptation workflow is realized by an
adaptation mechanism associated with a responsible entity which can be a de-
veloper, an operator, or the system. A developer can apply adaptations offline
(and deploy them on the running system), while an operator and the system can
apply adaptations online. An adaptation mechanism realizes a feedback loop.
The mechanism monitors uncertainties and checks whether the system complies
with its goals (rationales). If the system goals may be jeopardized, the adapta-
tion space of the adaptation elements is analyzed, i.e., the options available for
adaptation, to mitigate the uncertainties. Based on this analysis, the adaptation
mechanism selects adaptation options for adaptation elements. These options
are then executed in the system.

Adaptation Effect Analysis. This analysis uses a set of scenarios to as-
sess the effects of selecting different adaptation options on the behavior of the
system and the actor base. The analysis results help identifying improvements
of the adaptation elements and their adaptation options. The results can also
provide insights in the conditions when selected options may improve or degrade
the CIS behavior, e.g., in the form of increase/decrease of user activity. In the
exploration and ramp-up phases, adaptation effect analysis can be done using
simulation or via tool-assisted user testing. In later phases further approaches
like A/B testing and/or feature toggles can be added to enable automated, data-
driven processes for performance analysis, simulation and selection of adaptation
options. Fig. 2 shows the effects of adaptation for a CIS pilot that we developed
using a NetLogo analysis model. The graphs on the left show results when no
dissemination is used. The graphs on the right show results when a slow-cycled
global dissemination rule and a short-cycled actor-personalized dissemination
rule are activated. The results show that the contribution distribution (top) got
a steeper tail at the beginning with the dissemination rules activated, whereby
the actor activity (bottom) remained unchanged.



Continuous Adaptation Management in Collective Intelligence Systems 11

Fig. 2. Analysis results: none (left) or two (right) dissemination rules activated

Adaptation Option Conflict Analysis. This analysis performs a review
of the relations and dependencies between adaptation elements, options, and
adaptation elements and options that are simultaneously deployed and bound in
the different stages of the CIS’s life-cycle. The analysis results help to identify
possible conflicts and inconsistencies between CIS adaptation elements/options
that need to be resolved. In early stage phases, conflict detection and resolution
can be performed manually by the architect by using the CIS-specific adaptation
definition and workflow models. In later stage phases automated tool-support,
such as feature-to-code traceability and consistency checking of the CIS adapta-
tion models, is necessary to make conflict identification and resolution viable.

5 Evaluation of the Viewpoint

To obtain qualitative evidence of the usefulness and applicability of the CIS-
ADAPT viewpoint, we performed an in-depth study with eight engineers with-
out any experience in CIS design and development. Participants had between 1
and 7 years of industrial experience in software engineering/software architecture
and are active in Austrian companies as project managers, software architects
and software developers in various domains. To obtain qualitative data from
different perspectives, criteria to select the participants include a mix of male
and female engineers as well as a broad range of industry experience to get also
insights into how less experienced engineers use the viewpoint.

We applied a case study design to plan our qualitative in-depth study and
followed the guidelines for case studies in software engineering provided by Rune-
son et al. [20]. The concrete objective of the case study is answering the following
questions: (1) To what extent does the viewpoint support correct handling of CIS-
specific adaptation problems? (2)How useful are the model kinds with regard to
managing CIS-specific adaptation?



12 A. Musil et al.

Here we summarize the case study design and the results. For a detailed
description and the evaluation material, we refer the interested reader to [11].

5.1 Case Study Design

In this case study the participants were instructed to apply the architecture
viewpoint in three adaptation-related design tasks addressing CIS key elements
of a given scenario. The case study was organized as a 6-hours session at TU
Wien. We provided all participants with the same material to perform each task,
including a general description of the CIS scenario, its domain and stakeholders,
a set of pre-defined architecture models related to the particular view on CIS
adaptation management which they had to extend or modify according to the
tasks, and the viewpoint description with its model kinds and analyses.

Before starting with the design tasks, participants were introduced to CIS in
general, software architecture concepts in the context of ISO/IEC/IEEE 42010,
and the CIS-ADAPT architecture viewpoint. The participants were also intro-
duced to the CIS scenario and questions were answered to avoid any misun-
derstanding of the assignment. After the first part, participants were asked to
complete a short survey to gather their background information, including their
education and experience with (CIS) software architecture design as well as
adaptation handling in architecture design.

While the participants performed the design tasks, we video recorded their
actions and progression to gather data how they used the viewpoint in the given
scenario. At the end of the study session, we collected the modified architecture
models and the participants were asked to complete a short survey to assess
the applicability, usefulness and understandability of the applied architecture
viewpoint and its model kinds. Finally, we conducted individual semi-structured
interviews of about 10 minutes each to collect data about the participant’s ex-
periences and challenges during the application of the viewpoint.

We analyzed in total 14 hours of video material as well as the design models
that the participants produced while accomplishing the given tasks to identify
how they applied the viewpoint and used its model kinds and model elements.
The survey results allowed us to better understand and reason about the use-
fulness and understandability of the viewpoint from an architect’s perspective.
Finally, the interviews provided us insights into the experiences and challenges
the participants had to face as well as feedback for improvement.

5.2 Case Study Results

Eight participants completed 3 tasks, each of which required to use the 4 models
of the viewpoint. In total each participant produced 12 models across all tasks,
resulting in 96 models in total across all tasks and participants.

In task 1, participants extended the space of each of two pre-defined adap-
tation elements with a new element adaptation option. In task 2, participants
modified an existing option from manual to automated application of the option
at run time. In task 3, participants defined and introduced a new adaptation



Continuous Adaptation Management in Collective Intelligence Systems 13

P1 P2 P3 P4 P5 P6 P7 P8 G Y R
MK1 8 0 0
MK2 5 2 1
MK3 1 6 1
MK4 4 3 1
MK1 8 0 0
MK2 7 1 0
MK3 5 2 1

Participant

T
as

k 
1

sk
 2

MK3 5 2 1
MK4 3 4 1
MK1 6 2 0
MK2 8 0 0
MK3 1 7 0
MK4 5 2 1

4,33 4,00 4,67 3,33 3,33 2,67 2,67 5,00

T
as

T
as

k 
3

Performance

Easy Average Difficult Difficult Average Difficult Average Easy

Average Average Average Difficult Difficult Difficult Easy Average

Useful Average Average V. useful Average Useful V. Useful Useful

Efficient Efficient Average Efficient Efficient Efficient Efficient Efficient

Understanding

Applicability

Usefulness

Efficiency

Fig. 3. Overview of the results of 3 design tasks performed by 8 participants (G=Green:
correct solutions; Y=Yellow: partially correct; R=Red: incorrect)

element to the system and added two options to its space.
From the created 96 models, 61 (63.5%) were solved correctly, 29 (30.2%)

with some deviations, and only 6 (6.3%) models were incorrect. Fig. 3 shows
an overview of the model defects across all participants and tasks. Hence, in
the context of the design tasks, we can answer the first evaluation question (To
what extent does the viewpoint support correct handling of adaptation problems
in CIS? ) positively. Nevertheless, some of the participants commented on the
complexity of elements of the viewpoint, e.g., “For me, this [MK3] was the most
difficult model, because it has many aspects such as phases and milestones and
all interact. Also, this one is more formal. For understanding, you can exactly
see how level and phase and milestones are linked.” or “The workflow model
[MK4] was difficult, because it was not clear in the task description specifically
when the resolving should actually happen.” In the following, we elaborate on
the analysis of the usefulness of each model kind.

MK1. For the adaptation types model, 22 of 24 designs were performed with-
out defects, 2 with defects, and none incorrect. The usefulness of MK1 was scored
2.5/5 on average by the participants. Positive feedback includes “[...] the model
provides a good overview about the adaptation types [...]” and “[...] it was useful
to see the available choices that you have, also when it comes where to add new
options and elements [...]”. Some critical remarks were “[...] I personally would
map the types to my components so that they are not so generic like in the study
scenario [...]” and “[...] the model was not really necessary for me, because its
parts have been repeated already in model 2 [...]”. In conclusion, the usefulness of
MK1 for the tasks at hand is moderate, the opinions among participants differ.

MK2. For the adaptation definition model, 20 of 24 designs were performed
without defects, 3 with defects, and 1 incorrect. The usefulness of MK2 scored
4.1/5 on average by the participants. Some of the positive feedback of the partic-
ipants include “[...] with regards to utility, the definition model was definitely the



14 A. Musil et al.

best.” and “[...] the most helpful models for me have been models 2 and 3.” One
rather negative comment but showing its criticality was “The definition model
was the most challenging for me because it was so central and the following mod-
els depend on it. [...] you cannot do much meaningful with the later models if
you do not have the definition model straight.” In conclusion, MK2 was regarded
as a central model and indicated as highly useful in the tasks at hand.

MK3. For the adaptation in time model, 7 of 24 designs were performed
without defects, 15 with defects, and 2 incorrect. The usefulness of MK3 was
scored 2.4/5 on average by the participants. One of the positive comments was
“Model 3 and 4 have been pretty useful, in particular if you have to consider the
run time aspects. That was particularly useful.”. A critical comment was “The
model was tricky for me, because there is no definitive solution when there is the
ideal point in time - you know, too early or too late [...]”. In conclusion, MK3
was the worst performing model kind in terms of correct solutions. Regarding
utility the average score was moderate for the given tasks at hand. One recurring
comment was that the illustration of the CIS life-cycle that was used during the
introduction session would be a beneficial add-on for the viewpoint, e.g., one
participant commented “The life-cycle diagram would make using this model
easier. I redraw it from memory at the beginning so that I can better envision
the life-cycle, instead of just relying on the model kind.”

MK4. For the adaptation workflow model, 12 of 24 designs were performed
without defects, 9 with defects, and 3 incorrect. The usefulness of MK4 was
scored 4/5 on average by the participants. One of the positive comments was
“The workflow model helps to create a more flexible system and you see clearly
which risks are covered.” A critical comment was “It was not always clear when
it was run time and when it was development time. Also the dependencies be-
tween tasks were rather loose. I think sometimes you cannot sharply discriminate
clearly between user tasks and system tasks, as it is suggested in the model kind.”
In conclusion, MK4 has shown to be a very useful model for the tasks at hand.

6 Threats to Validity

We briefly discuss potential validity threats of this study and ways how they
were mitigated.

Internal Validity. By using well-defined data extraction forms in the CIS
survey and an interview guide, we attempted to conduct the study in a con-
sistent and objective way to reduce the risk to affect the validity of the data
provided by the study subjects. Especially during the interviews we needed to
be very careful when giving specific examples so that we do not influence the
given answers. For both data collection methods we performed a pilot study for
improvement, e.g., to identify questions/data items that are confusing or do not
provide enough informative quality. Also expert feedback was used to counter-
check the consistency and integrity of the data collection instruments.

To address potential threats of misinterpretation of the collected data, the
findings have been derived by two researchers and two additional experienced



Continuous Adaptation Management in Collective Intelligence Systems 15

researchers cross-checked and validated the analysis results and conclusions. Fur-
thermore, during the interviews we regularly summarized the given information
and asked the participants to verify the correctness of the interpretation.

External Validity. The presented models are the result of an in-depth anal-
ysis of the gathered data but might be limited by the samples we investigated. To
increase the generalization of the results to a broader context and strengthen the
study results, we plan to conduct a CIS survey with a larger system sample and
do more expert interviews. For the evaluation of the viewpoint, we performed a
case study with eight participants. To enhance generalization of the results, this
qualitative inquiry should be extended with additional cases in other domains.

7 Conclusion

In this paper, we presented an architecture viewpoint for continuous adaptation
management in CIS, aligned with ISO/IEC/IEEE 42010. The viewpoint is in-
tended to address CIS-specific adaptation concerns and existing limitations. It
was designed to be compatible with other adaptation approaches so that our con-
tribution represents a useful addition to domain-specific adaptation approaches.
A qualitative evaluation with eight experienced engineers in a case study shows
that the viewpoint is well-structured and particularly useful to handle different
CIS-specific adaptation problems. In future work, we plan to refine the viewpoint
and extend its evaluation. Furthermore, we plan to further develop the analysis
part of the viewpoint and consider to develop tool support for it.

Acknowledgments. The financial support by the Christian Doppler Research
Association, the Austrian Federal Ministry for Digital and Economic Affairs and
the National Foundation for Research, Technology and Development is gratefully
acknowledged.

References

1. Andersson, J., et al.: Software Engineering Processes for Self-Adaptive Systems.
In: Software Engineering for Self-Adaptive Systems II, LNCS, vol. 7475, pp. 51–75.
Springer, Berlin, Heidelberg (2013)

2. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. Sage Publications, Inc., 3rd edn. (2007)

3. Dorn, C., Taylor, R.N.: Coupling Software Architecture and Human Architecture
for Collaboration-Aware System Adaptation. In: Proc. Int. Conf. on Software En-
gineering. pp. 53–62. IEEE (2013)

4. Galster, M., Avgeriou, P.: A Variability Viewpoint for Enterprise Software Systems.
In: Proc. of Joint WICSA/ECSA. pp. 267–271. IEEE Computer Society (2012)

5. Garlan, D., et al.: Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure. Computer 37(10), 46–54 (2004)

6. Hove, S.E., Anda, B.: Experiences from Conducting Semi-structured Interviews
in Empirical Software Engineering Research. In: Proc. 11th IEEE Int. Software
Metrics Symposium. pp. 23–32. IEEE Computer Society (2005)



16 A. Musil et al.

7. ISO/IEC/IEEE 42010: Systems and softw. engineering - Architecture descr. (2011)
8. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer

36(1), 41–50 (2003)
9. Kramer, J., Magee, J.: Self-Managed Systems: An Architectural Challenge. In:

Future of Software Engineering. pp. 259–268. IEEE Computer Society (2007)
10. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A Classification Framework of

Uncertainty in Architecture-Based Self-Adaptive Systems With Multiple Quality
Requirements. In: Managing Trade-offs in Adaptable Software Architectures, pp.
45–77. Morgan Kaufmann (2017)

11. Musil, A., Musil, J., Weyns, D., Biffl, S.: Supplementary Material: Continuous
Adaptation Management in Collective Intelligence Systems (2019), http://qse.
ifs.tuwien.ac.at/ci/material/pub/ecsa19/

12. Musil, J., Musil, A., Biffl, S.: Introduction and Challenges of Environment Architec-
tures for Collective Intelligence Systems. In: Agent Environments for Multi-Agent
Systems IV, LNCS, vol. 9068, pp. 76–94. Springer International Publishing (2015)

13. Musil, J., Musil, A., Biffl, S.: SIS: An Architecture Pattern for Collective Intelli-
gence Systems. In: Proc. 20th EuroPLoP. pp. 20:1–20:12. ACM (2015)

14. Musil, J., Musil, A., Weyns, D., Biffl, S.: An Architecture Framework for Collective
Intelligence Systems. In: Proc. 12th WICSA. pp. 21–30. IEEE (2015)

15. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A Meta-model for Multi-agent
Systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

16. Oreizy, P., et al.: An Architecture-Based Approach to Self-Adaptive Software.
IEEE Intelligent Systems 14(3), 54–62 (1999)

17. Pääkkönen, P., Pakkala, D.: Reference Architecture and Classification of Technolo-
gies, Products and Services for Big Data Systems. Big Data Research 2(4), 166–168
(2015)

18. Parunak, H.V.D.: A Survey of Environments and Mechanisms for Human-Human
Stigmergy. In: Environments for Multi-Agent Systems II, LNCS, vol. 3830, pp.
163–186. Springer (2006)

19. Ramirez, A.J., Cheng, B.H.C.: Design Patterns for Developing Dynamically Adap-
tive Systems. In: Proc. ICSE Workshop on Softw. Eng. for Adaptive and Self-
Managing Systems. pp. 49–58. ACM (2010)

20. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley Publishing, 1st edn. (2012)

21. Saldana, J.: The Coding Manual for Qualitative Researchers. Sage, 2nd edn. (2013)
22. Seaman, C.B.: Qualitative methods in empirical studies of software engineering.

IEEE Transactions on Software Engineering 25(4), 557–572 (1999)
23. Sumbaly, R., Kreps, J., Shah, S.: The Big Data Ecosystem at LinkedIn. In: ACM

SIGMOD Conference. pp. 1–10. ACM (2013)
24. Tekinerdogan, B., Sözer, H.: Variability Viewpoint for Introducing Variability in

Software Architecture Viewpoints. In: Proc. WICSA/ECSA Companion. pp. 163–
166. ACM (2012)

25. Weyns, D.: Software Engineering of Self-adaptive Systems. In: Handbook of Soft-
ware Engineering, pp. 399–443. Springer (2019)

26. Weyns, D., Malek, S., Andersson, J.: FORMS: Unifying Reference Model for For-
mal Specification of Distributed Self-adaptive Systems. ACM Transactions on Au-
tonomous and Adaptive Systems 7(1), 8:1–8:61 (2012)

27. Weyns, D., et al.: On Patterns for Decentralized Control in Self-Adaptive Systems.
In: Software Engineering for Self-Adaptive Systems II, LNCS, vol. 7475, pp. 76–
107. Springer (2013)


