
Towards Collective Intelligence System
Architectures for Supporting Multi-Disciplinary

Engineering of Cyber-Physical Production Systems
Angelika Musil, Juergen Musil and Stefan Biffl

CDL-Flex, Institute of Software Technology and Interactive Systems
TU Wien, Vienna, Austria

Email: {angelika, jmusil}@computer.org, stefan.biffl@tuwien.ac.at

Abstract—The engineering process of Cyber-Physical Produc-
tion Systems (CPPS) involves collaboration of multiple engi-
neering disciplines. Major obstacles arising from these multi-
disciplinary engineering processes are heterogeneous representa-
tions, weak accumulation and integration of dispersed, local engi-
neering knowledge, and required effective coordination between
multi-disciplinary engineering teams across the organization.
Further, heterogeneous communication channels lead to increased
information sharing effort for individual team members, ill-
structured knowledge representation and management, and poor
discoverability of business-critical know-how. These challenges
can be addressed by Collective Intelligence Systems (CIS) that en-
hance engineering methods and tools in large, multi-disciplinary
projects. CIS help to identify important implicit, hard-to-access
dispersed information and engineering knowledge, make it ex-
plicit, and promote the awareness and efficient management of
this business-critical knowledge. Therefore, this paper presents
a research agenda focusing on the systematic and empirically-
grounded investigation of needs, basic concepts, principles, and
models of CIS software architectures in particular application
domains, and outlines expected results.

Index Terms—Awareness, collective intelligence, collective in-
telligence system, coordination, cyber-physical production sys-
tems, industrie 4.0, industry 4.0, knowledge management, soft-
ware architecture, systems engineering.

I. INTRODUCTION

Cyber-Physical Production Systems (CPPS), such as in-
dustrial production plants, are typically the result of com-
plex, multi-disciplinary engineering processes, where several
engineering disciplines, such as mechanical, electrical, and
software engineering, are involved and need to collaborate
[1]. In these software and systems engineering environments,
the work of engineers depends on inputs and results from
other engineering disciplines, e.g., requirements incorporated
in a range of engineering models. Therefore, it is critical
to systematically support these complex knowledge-intensive
tasks in multi-disciplinary engineering processes of CPPS
to ensure a high-quality output, early defect detection and
prevention, and to reduce operational risks of CPPS.

Major obstacles for improving multi-disciplinary engineer-
ing processes are heterogeneous representations (engineering
methods, models and terminologies), weak accumulation and
integration of the dispersed, local engineering knowledge that
is instrumental for the development and validation of CPPS as
well as required effective coordination and sharing between

multi-disciplinary engineering teams in the organization [1].
The use of heterogeneous communication channels between
individuals leads to an increased information sharing effort for
the individual the more people are involved. There is also a
lack of structured knowledge representation and management
as well as effective discoverability of business-critical know-
how.

These challenges with engineering CPPS at organization
level can be addressed by Collective Intelligence Systems
(CIS). Well-known examples of CIS comprise Facebook,
Wikipedia, the collaborative Git repository hosting platform
GitHub, and the programming Q&A platform Stack Overflow.
As a socio-technical system [2], a CIS acts as a mediator of
interactions among a user community and relies substantially
on the continuous flow of contributions of the connected users
within the provided services [3]. Thereby CIS provide effec-
tive, bottom-up coordination and communication capabilities
thus facilitating the aggregation, management and distribution
of knowledge in a coordinated way [3]. “By contributing
new content individually to these systems, the users build
collectively a continuously growing repository of valuable
information, knowledge and data, and thus generate collective
intelligence of a user community” [3] which would not be
possible if each individual acted in isolated ways. Today, CIS
haven been adopted in a growing number of various applica-
tion contexts and domains, in particular as organization-level
systems, since they provide macro- and micro-level benefits to
online communities of various scales [3]. One domain where
organization-level CIS have recently increased in relevance
is Industrie 4.0 and CPPS [4]. In large, multi-disciplinary
projects such as the engineering of CPPS, CIS have the po-
tential to enhance (software) engineering methods and tools to
overcome the existing accumulation, integration, collaboration,
and communication complexities of hard-to-access dispersed
information and engineering knowledge. Furthermore, CIS
help to identify important implicit engineering knowledge and
make it explicit as well as to provide the awareness and
efficient management of this business-critical knowledge.

Nevertheless, each target application context and domain
has characteristic particularities that need to be addressed
by a well-suited CIS architecture design to engineer a most
effective system. Despite CIS are very popular and widespread



in use, they have not been sufficiently investigated so far
with focus on software architecture design. Software archi-
tects still face considerable obstacles in understanding and
choosing the best fitting CIS design with features that are
demanded to satisfy the organization’s business needs and
goals, existing workflow limitations as well as the specific
application context. Feature modifications highly affect a CIS’s
significant capabilities and consequently its success. Such
modifications have a strong impact on the system conceptually
(e.g. applied rules of the system) as well as technically (e.g.
used technologies). Therefore, the software architect needs a
complete understanding about (1) the set of features all kinds
of CIS have in common and thus are fixed core features to deal
with in the architecture design, and (2) existing system variants
and their effects to make better design decisions. Without this
knowledge, the design decision making of software architects
leaves uncertainty about the effects on the system’s capa-
bilities and behavior. A consolidated systematic knowledge
base of the architectural principles would extremely improve
the understanding of concepts significant for a CIS’s success.
Furthermore, a methodological support for architecting CIS
tailored for complex application contexts and specific domains
like CPPS engineering would provide useful assistance and
guidelines for software architects to model these systems.
These nontrivial research challenges provided the impetus
for this paper which presents a research agenda focusing
on the systematic and empirically-grounded investigation of
needs, basic concepts, principles, and models of CIS software
architectures in particular application domains, and outlines
expected results.

The remainder of this paper is structured as follows: Section
II provides background information about CIS. In section III
we present a research agenda describing research challenges,
goals and expected results. Section IV summarizes relations
to existing work. Finally, section V draws conclusions.

II. COLLECTIVE INTELLIGENCE SYSTEMS

Over the last decades Collective Intelligence Systems
(CIS) have been established as new forms of web-based,
user-contribution-driven information systems in our modern
knowledge-driven society. CIS harness the collective knowl-
edge and work of connected people by providing a web-
based environment with capabilities to effectively share topic-
specific information with the participating community and
to discover and reuse relevant knowledge more efficiently
[3]. Furthermore, CIS enable self-organizational knowledge
transfer and coordination of distributed work [3] as well as
ongoing maintenance of the knowledge base, thus supporting
individuals to communicate and work together on complex
tasks like engineering CPPS.

A central concept behind CIS is the successful emergence
of Collective Intelligence (CI) by applying certain mechanisms
within the system environment. CI is a well-established phe-
nomenon researched in several fields like sociology, biology,
political science, economics for decades [5]. Pierre Lévy’s
often cited definition describes CI as “a form of universally

distributed intelligence, constantly enhanced, coordinated in
real time, and resulting in the effective mobilization of skills.
[...] No one knows everything, everyone knows something.”
[6]. Recently, the emergence of new information communi-
cation technologies has enabled new forms of how collective
intelligence occurs [7]. Today, the new possibilities provided
by the Internet and the Web 2.0 era [8] have significantly
contributed to the research efforts in IT-enabled collective
intelligence and the development of an increasing number of
CIS in various application contexts and domains. In particular,
CIS have experienced a strong growth and acceptance on
organizational level like enterprise social networks and wikis,
also due to support by the Enterprise 2.0 [9] movement, which
advocates the use of modern social software solutions in and
between companies and their customers. A recent discussion
of CI in the organizational context (CIorg) can be found in
Grasso et al. [10].

III. RESEARCH AGENDA FOR COLLECTIVE INTELLIGENCE
SYSTEM ARCHITECTURE DESIGN SUPPORT

To provide the usefulness and general benefits of CIS in
order to improve existing workflows, adequate tailoring and
business-critical fit of a CIS for the respective application
context, domain and organization are key success factors.

Software architects design and build CIS which are tailored
towards specific needs of the stakeholders and the context
of a domain or organization. But there are several ways to
incorporate CIS capabilities into information systems. The
definition, design and selecting of a sufficiently complete
and well-fitting set of software features and functions that
realize a CIS’s main regulatory capabilities and address the
required business-critical functionality as well as envisioned
future growth paths is an enormous challenge for software
architects. So far there is a lack of adequate architectural
design guidelines for CIS which hinders software architects
to systematically conceptualize and manage CIS-specific con-
cerns in architecture descriptions. This circumstance increases
the risk that software architects make inappropriate architec-
tural design decisions about system features for the respective
context. Current approaches, predominantly comprising trial
and error or clone and own from similar successful CIS,
often are responsible for missing and ill-prioritized features.
Consequently, these strategies lead to ineffective systems and,
in worst case scenarios, to project failures due to limited
knowledge and understanding of the main CIS capabilities
and a systematic design process. Therefore creating a solid
understanding about CIS commonalities and variabilities is
prerequisite to invent future CIS for multi-disciplinary engi-
neering scenarios in CPPS.

Hence, one key challenge that need to be addressed by
research is the lack of architecture-relevant knowledge about
commonalities and significant variabilities among identified
key elements of CIS. In addition, missing architectural de-
sign approaches to describe significant CIS capabilities and
manage the variabilities in a systematic way as well as to
guide the design decision making for supporting context-aware



selection of adequate feature variants makes it a hard time for
a software architect to build the best fitting kind of CIS for the
intended purpose and respective application context, domain
and organization.

Research in this area should address these challenges by
conducting a systematic empirically-grounded investigation of
basic concepts, principles, variabilities and models of software
architectures for CIS. In particular, research requires to provide
a rigorous understanding of the architectural constructs and
principles that shape a common CIS as a basis for focusing
then on an analysis of architecture variations of CIS. A cata-
logue of identified commonalities and significant variabilities
among CIS key features as well as a better understanding of
their effects would support a more effective tailoring of a CIS
for the respective application domain to better address current
business process limitations, needs and concerns. Research
areas, that should provide significant contributions to the
design and engineering of CIS, are:

1. How, to what extent, and in which system elements do
architecture-relevant variations in CIS occur?

Based on the identified challenges, the research issues here
relate to specific activities that might explore certain architec-
tural basis patterns. These patterns represent the essence of all
these systems in a minimal system description which needs
to be differentiated to more specific ones. An investigation of
real-world CIS in a wide scope would allow identifying exist-
ing CIS variations with respect to the described architectural
basis pattern, how these variations are affected by underlying
system elements and design decisions, and what are strengths
and weaknesses of each variation in order to better assess its
potential application areas.

With respect to the CPPS domain, we need to investigate
existing CIS, their design and application in more detail
in the context of CPPS. In addition, CIS requirements and
domain-specific concerns need to be collected in the context of
engineering CPPS. These findings would allow a comparison
of CPPS-specific CIS and CIS in general as well as support
a better understanding of the domain-specific aspects that are
important to consider during architecting.

2. How can the identified CIS families be adequately clas-
sified?

To map the characteristic features of each identified CIS
variation, which branches away from the base system, groups
of CIS need to be defined on the basis of shared characteristics.
As a consequence, a system taxonomy can be built that
supports a comprehensive classification and comparison of
CIS architectural sub-styles. First observations of different
kinds of CIS revealed that these systems share certain features
which were altered to some extent for a single one based on
made system design decisions. For example if a wiki and a
microblogging platform are compared, different concerns like
the time duration between contribution cycles can be noted.

Based on the findings of existing CIS in the application
domain of CPPS as well as the collected system requirements
and domain-specific concerns, a dominant feature set would
emerge that is characteristic for CPPS-specific CIS and allow

to assign this kind of systems to an identified CIS variation
as well as to integrate it into the CIS taxonomy.

3. How can software architects be supported with a system-
atic architectural design approach that focuses on identified
feature variations in CIS?

To provide systematic support for software architects in
choosing a well-suited CIS variant for the respective applica-
tion context and business goals as well as in the design process
of the system with the required set of features, the gained
architectural knowledge about the identified variants needs to
be consolidated and formalized using established and practical
useful methodologies and tools. A variability modeling of CIS
should support software architects with variant analysis to
evaluate trade-offs before making design decisions and with
additional effective design methods.

In particular, to better support software architects in
engineering CIS in the CPPS domain, aspects and concerns
specific in the context of CPPS need to be analyzed that are
important to be addressed in a CIS architecture design for
process improvement. This architectural knowledge can be
incorporated in a systematic architecture approach specific
for this application domain.

Expected results of the research contributions should (1)
provide a deeper understanding of commonalities and vari-
abilities of CIS families and subgroups from a software archi-
tecture perspective, (2) offer better support to explore novel
kinds of CIS and application areas like CPPS, and (3) offer
improved design and decision making approaches with regards
to the various system families for software architects who work
with CIS for particular domains like multi-disciplinary systems
engineering.

IV. RELATED WORK

This section presents an overview of related work on
software architecture, key concepts and collective intelligence
systems.

Recent activities in the area of software architecture re-
search have failed to provide sufficient understanding and
methodological support for architecting in CIS domain. Today,
research often focuses on the engineering of technical aspects.
Although research fields of human computation, crowdsourc-
ing and social computing investigate networked human groups
and computing systems [11], they do not address aspects that
arise from a software architecture point of view, which is
although critical to design well-tailored systems. Therefore, a
systematic investigation of underlying models and mechanisms
for computational support of mediated social interaction and
human cognitive processes is highly relevant [2] to provide
a consolidated systematic knowledge base of the architectural
principles of a successful CIS.

In recent years there have been efforts to understand char-
acteristic features of CIS. Malone et al. [7] were the first who
investigated foundations of CIS and identified staffing, goal,
incentives and structure/process as four key elements. Lyk-
ourentzou et al. [12] introduced a CI categorization framework



which distinguishes between passive and active CIS, whereby
active CIS are differentiated in collaborative, competitive and
hybrid ones. Smart et al. [13] created a taxonomy of Social
Machines, a family of socio-technical systems which subsumes
CIS, that consists of eleven characteristic features. From a
crowdsourcing perspective, Bernstein et al. [5] categorized
them in directed, self-organizational and passive systems. A
limitation that is shared among the previous systematizations
is that they are broad and abstract, thus cause numerous
interpretative gaps, when it comes to the conceptual and
technical architecting of CIS. Current compilations of CIS
research are provided by Miorandi et al. [14] and Malone et
al. [5].

For emerging domains like Industrie 4.0 and CPPS, CIS
are of particular interest in their role as enabling technologies.
Bauernhansl et al. [4] highlighted on numerous occasions the
potential of social media platforms in future cyber-physical
production systems, but also the lack of their current appli-
cation. Two aspects should be highlighted in particular: (1)
the efficient collection and maintenance of project-independent
knowledge [15], and (2) the increased computerization of
physical systems and the resulting need for solution providers
to organize and coordinate their internal software base. De-
velopers of software-intensive systems have an own industrial
internal software ecosystem (ISECO) [16], which has evolved
internally around their platforms. Guiding platform evolution
and reducing software architectural erosion as well as archi-
tectural technical debt are challenges that increase in relevance
with ongoing multi-disciplinary and global distribution of de-
velopment teams and the increased interdependence of created
systems.

V. CONCLUSION

In this paper we presented a research agenda for inves-
tigating systematic architecture design guidelines for CIS
that are well-tailored for a respective CPPS application con-
text. We highlighted the importance of better understanding
architecture-relevant principles and significant variabilities of
CIS as well as an exploration of systematic architectural design
approaches as essential research challenges that need to be ad-
dressed in future research work. The described expected results
should provide contributions to the design and engineering of
CIS and to a consolidated knowledge base for the CIS domain
as a new promising research field. For the CPPS domain,
CIS are of particular relevance to provide new approaches
for efficient knowledge exchange and coordination support
in multi-disciplinary engineering teams and processes in the
design time. The application of CIS in CPPS should improve
the aggregation, maintenance and awareness of distributed
knowledge and artifacts contributed by various involved disci-
plines, as well as enable effective coordination and sharing of
business-critical know-how. A subsequent application of the
researched CIS architectural design approaches in the context
of engineering CPPS by considering identified domain-specific
aspects and concerns enables software architects to adequately
tailor a CIS with regards to current engineering methods

and tools and enhance them with required capabilities and
thus overcome current challenges and improve the engineering
process.

ACKNOWLEDGMENT

This work was supported by the Christian Doppler
Forschungsgesellschaft, the Federal Ministry of Economy and
Science, the Austrian National Foundation for Research, Tech-
nology and Development, and TU Wien research funds.

REFERENCES

[1] R. Mordinyi and S. Biffl, “Versioning in Cyber-physical Production
System Engineering – Best-Practice and Research Agenda,” in Proc. of
the IEEE/ACM 1st International Workshop on Software Engineering for
Smart Cyber-Physical Systems (SEsCPS ’15). IEEE, 2015, pp. 44–47.

[2] A. Omicini and P. Contucci, “Complexity and Interaction: Blurring
Borders between Physical, Computational, and Social Systems. Prelim-
inary Notes,” in Proc. of the 5th International Conf. on Computational
Collective Intelligence Technologies and Applications (ICCCI ’13), ser.
LNCS, C. Bdic, N. T. Nguyen, and M. Brezovan, Eds., vol. 8083.
Springer Berlin Heidelberg, 2013, pp. 1–10.

[3] J. Musil, A. Musil, and S. Biffl, “Introduction and Challenges of
Environment Architectures for Collective Intelligence Systems,” in Agent
Environments for Multi-Agent Systems IV, ser. LNCS. Springer
International Publishing, 2015, vol. 9068, pp. 76–94.

[4] T. Bauernhansl, M. ten Hompel, and B. Vogel-Heuser, Eds., Industrie
4.0 in Produktion, Automatisierung und Logistik. Springer Vieweg,
2014.

[5] T. W. Malone and M. S. Bernstein, Eds., Handbook of Collective
Intelligence. MIT Press, 2015.

[6] P. Lévy, Collective Intelligence: Mankind’s Emerging World in Cy-
berspace. Perseus Books, 1997.

[7] T. W. Malone, R. Laubacher, and C. Dellarocas, “Harnessing Crowds:
Mapping the Genome of Collective Intelligence,” MIT Center for
Collective Intelligence, Working Paper No. 2009-001, Feb. 2009, avail-
able at: http://cci.mit.edu/publications/CCIwp2009-01.pdf (last visited
01/21/2016).

[8] T. O’Reilly and J. Battelle, “Web Squared : Web 2.0 Five Years On,” in
Proc. of the 6th Annual Web 2.0 Summit. O’Reilly Media Inc., 2009.

[9] A. McAfee, Enterprise 2.0: New Collaborative Tools for Your Organi-
zation’s Toughest Challenges. Harvard Business Press, 2009.

[10] A. Grasso and G. Convertino, “Collective Intelligence in Organizations:
Tools and Studies,” Computer Supported Cooperative Work (CSCW),
vol. 21, no. 4-5, pp. 357–369, 2012.

[11] A. J. Quinn and B. B. Bederson, “Human Computation: A Survey and
Taxonomy of a Growing Field,” in Proc. of the SIGCHI Conf. on Human
Factors in Computing Systems (CHI ’11). ACM, 2011, pp. 1403–1412.

[12] I. Lykourentzou, D. J. Vergados, E. Kapetanios, and V. Loumos, “Col-
lective Intelligence Systems: Classification and Modeling,” Journal of
Emerging Technologies in Web Intelligence, vol. 3, no. 3, pp. 217–226,
2011.

[13] P. Smart, E. Simperl, and N. Shadbolt, “A Taxonomic Framework
for Social Machines,” in Social Collective Intelligece, D. Miorandi,
V. Maltese, M. Rovatsos, A. Nijholt, and J. Stewart, Eds. Springer
International Publishing, 2014, pp. 51–85.

[14] D. Miorandi, V. Maltese, M. Rovatsos, A. Nijholt, and J. Stewart, Eds.,
Social Collective Intelligence: Combining the Powers of Humans and
Machines to Build a Smarter Society. Springer International Publishing,
2014.

[15] J. Nasser, C. Maga, P. Göhner, T. Ehben, T. Tetzner, and U. Löwen,
“Improved Systematisation in Plant Engineering and Industrial Solution
Business - Increased Efficiency through Domain Engineering,” at-
Automatisierungstechnik, vol. 58, no. 9, pp. 524 – 532, 2010.

[16] K.-B. Schultis, C. Elsner, and D. Lohmann, “Architecture Challenges
for Internal Software Ecosystems: A Large-scale Industry Case Study,”
in Proc. of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE ’14). ACM, 2014, pp. 542–
552.


