Engineering Object Change Management Process Observation in Distributed Automation Projects

Dietmar Winkler Thomas Moser Richard Mordinyi Wikan D. Sunindyo Stefan Biffl

Christian Doppler Laboratory CDL-Flex
Institute of Software Technology and Interactive Systems (ISIS)
Vienna University of Technology
http://cdl.ifs.tuwien.ac.at
Motivation and Background

- Context: Complex Automations Systems Engineering Projects
- Distributed Environments
- Heterogeneous Disciplines
 - Electrical Engineering
 - Mechanical Engineering
 - Software Engineering
- Heterogeneous Methods, Data Models, and Tools
- Challenges
 - Collaboration of Engineers from heterogeneous disciplines.
 - Change Management & Quality Assurance across disciplines and tool borders.
 - Process support in a distributed environment.
Concurrent changes in distributed environments require efficient change management approaches (1).

Efficient synchronization mechanisms (2) enable cross-disciplinary change management based on the Engineering Service Bus Platform.
Foundation for Semantic Integration: Common Concepts

Signals

- Signals are common concept for linking information between disciplines (e.g., mechanical interface, electrical signal (wiring), software I/O variable).

Challenges & Goals

- Consistent signal handling (e.g., up to 40,000 signals in power plants).
- Integration of signals from heterogeneous data models / tools.
- Common concept based on semantic integration.
- Elicitation of a Virtual Common Data Model (VCDM)
Virtual Common Data Model (VCDM)

Data storage for change/version management across tools

Tool A Data Model
- Electrical Plan
 - Tool Data
- Cust_Signal
 - Address
 - Description
 - Value Range
 - Voltage
 - Digit/Analog

Tool A Data Extract

Tool B Data Extract

Tool B Data Model
- Function Plan
 - Tool Data
- FB_Signal
 - Location
 - FB_Info
 - Value Dirs
 - Input
 - Datatype

Engineering Data Base

Virtual Common Data Model
- Domain/Project Ontology
 - Requirement
 - Engineering Trace
 - Link
 - Engineering Ticket
- Common_Signal
 - Address
 - Description
 - Value Range
 - Voltage
 - ...
- Support Point
 - Location
 - Id
 - ...

Mapping of Tool A data model to Virtual Common Data Model

Mapping of Tool B data model to Virtual Common Data Model

Tool A Parser

Tool B Parser

Numbered Circles:
1. Checkin,
2. Checkout
3. Version management

Numbered Squares:
1. Derive Virtual Common Data Model (VCDM)
2. Derive Mapping from a tool to VCDM
3. Configure parser with data mapping
Signal Change Management with the Automation Service Bus

- **Challenges and Goals**
 - Some conflicts cannot be resolved during check-in, e.g., removed signals
 - Notification required to minimize surprises in the engineering team

- **Conceptual Approach**
 1. Execute Changes
 2. Conduct Difference Analysis
 3. Identify “Removed Signals” → generate Engineering Ticket
 4. Notify (multiple) related stakeholders
 5. Checkout
Signal Change Management Workflow

- **Signal Changes**
 - Modified signals
 - New signals
 - Removed signals
 - Accepted / rejected signals

- Notification of changes to related stakeholders

- Events (E1 .. E10) enable process observation and project control

- Evaluation: pilot application based on historical data.
Pilot Application & Study Description

- **Goal:**
 1. Verification and validation of signal change management (process behavior)
 2. Definition of project metrics, i.e., number of change per engineering phase / check-in sequence) for project monitoring and control.

- **Measurement Data & Metrics**
 - Events.
 - Definition of Product and Project Metrics.

Metric / No. of	Metrics Description
Check-ins	Number of different signal lists from various sources
Signals	Number of signals handled during an individual check-in.
Similar Signals	Number of unchanged signals (signal list compared to EDB signals)
Accepted changes	How many changes were accepted during an individual check-in? Accepted signals include (a) new signals, (b) deleted signals, and (c) modified signals.
Rejected changes	How many changes were rejected during check-in?

- **Material:**
 - Real world project (hydro power plant) with three different signal lists in early phases of development (approx. 700 signals per list).

- **Process:**
 - Check-in of different signal lists
 - Capturing event data
 - Analysis of event data for process evaluation and determination of product metrics.
Goal 1: Change Management Process Evaluation

- Process Evaluation with ProM

- Goal of process evaluation with ProM:
 - Identify deviations of real and expected processes / workflows
 - Identification of bottlenecks for process improvements.
 - Measurement data for process / workflow analysis, i.e., time data, number of traces, type of traces.

- Limitations: Pilot application in controlled lab environment.

Goal 2: Project Metrics – Results of the Pilot Application

- Process Verification and Validation: Compliance of the implemented process and the expected workflow.
- Project monitoring and observation:

<table>
<thead>
<tr>
<th>Check-in Phases</th>
<th>Phase 1.1</th>
<th>Phase 1.2</th>
<th>Phase 1.3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>%</td>
<td>No</td>
<td>%</td>
<td>No</td>
</tr>
<tr>
<td>Similar Signals</td>
<td>0</td>
<td>0%</td>
<td>89</td>
<td>6.8%</td>
</tr>
<tr>
<td>Accepted Changes</td>
<td>708</td>
<td>100%</td>
<td>1,191</td>
<td>91.6%</td>
</tr>
<tr>
<td>Rejected Changes</td>
<td>0</td>
<td>0%</td>
<td>20</td>
<td>1.5%</td>
</tr>
<tr>
<td>Signal Comparisons</td>
<td>708</td>
<td>100%</td>
<td>1,300</td>
<td>100%</td>
</tr>
</tbody>
</table>

Share of Signal Changes

Share of Signal Change Type
Summary & Outlook

Automation systems engineering projects
- Contributions from several engineering disciplines
- Need for change management across semantically heterogeneous data models in engineering tools and projects

Automation Service Bus (ASB) and Engineering Database (EDB) concept enables
- Version management
- Change & conflict detection and resolution

Outlook
- Engineering Cockpit
- Identify new use cases from heterogeneous application domains.
- Identify candidate industry partners for research prototype development.
Engineering Object Change Management Process Observation in Distributed Automation Systems Projects

Dietmar Winkler, Thomas Moser, Richard Mordinyi, Wikan D. Sundindyo, Stefan Biffl

Christian Doppler Laboratory CDL-Flex
Institute of Software Technology and Interactive Systems, TU Vienna

http://cdl.ifs.tuwien.ac.at
Dietmar.Winkler@tuwien.ac.at