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Abstract—Stakeholders from several domains with local termi-
nologies have to work together to develop and operate software-
intensive systems, like production automation systems. Ontolo-
gies support the translation between local terminologies via 
common domain concepts. Unfortunately, the ontology models 
can become large and complex if they include several aspects on 
a domain and some parts of the data model are volatile. In this 
paper, we propose a data modeling approach to support ontology 
users based on ontology building blocks, so-called “Ontology 
Areas” (OAs), which allow solving tasks with smaller parts of the 
overall ontology. We evaluate the proposed approach with use 
cases from the production automation domain: translation be-
tween stakeholder roles to support design-time and run-time 
decision making. Major result in the study context is that OAs 
improved the efficiency of data collection for decision making. 

I. INTRODUCTION 
The integration of business processes and IT systems in 

homogeneous environments (i.e., consistent data formats and 
terminology) is supported by well-established approaches like 
data integration using Scheer’s ARIS for CIM [20]. However, 
in more heterogeneous environments with a range of data for-
mats and local terminologies like the production automation 
domain, typically stakeholders from several areas (e.g., busi-
ness experts, software engineers and electrical engineers) 
work together to develop and operate software-intensive sys-
tems. A homogenization of these environments is often not 
achievable, if the stakeholders come from different organiza-
tional backgrounds or organizations change over time due to 
mergers and acquisitions. The precondition for successful se-
mantic integration is a common understanding on the relevant 
concepts in the problem domain of the project. 

An example for a collection of common problem domain 
concepts is the Enterprise-Control System Integration1 (ECSI) 
standard [1] for developing automated interfaces between en-
terprise and control systems. The objectives of ECSI are to 
provide a) a consistent terminology as foundation for supplier 
and manufacturer communications, b) consistent information 
models, and c) consistent operations (process) models, which 
are the basis for clarifying application functionality and how 
information shall be used. 

However, a standard like ECSI can only cover parts of the 
problem domain without getting too complex and hard to use. 
Further, many key players in the production automation do-
main currently do not follow this standard, which often hin-
ders the cooperation of stakeholders in projects, since trans-

                                                 
1 http://www.isa-95.com 

formations between stakeholder terminologies to overcome 
semantic gaps between the stakeholders need to be conducted 
by scarce experts or carefully hand-crafted.   

Ontologies are flexible open-world data models for knowl-
edge representation, which store information in machine-
understandable notation [10]. Therefore, ontologies can help 
to bridge semantic gaps between partial data models by pro-
viding mappings between them via common domain concepts. 
Ontologies usually capture problem-domain-specific informa-
tion which can be reused later. Due to their concurrent devel-
opment ontologies need to be checked for inconsistencies to 
stay useful. However, ontologies in practice usually have to 
combine several view points and thus get large and complex, 
particularly, if the ontology contains volatile domain elements, 
such as run-time data.   

In this paper, we propose a data modelling approach that 
helps structure ontologies with ontology building blocks, so-
called “Ontology Areas” (OAs). An OA is a meaningful part 
of an ontology for a stakeholder, which helps ontology users 
managing a complex ontology. The combination of all needed 
OAs represents the overall ontology for supporting the origi-
nal engineering process.  

We evaluate the proposed OA approach with use cases in 
the production automation domain: 1. Translation between 
local stakeholder terminologies; 2. Provision of design context 
for run-time data interpretation; and 3. Run-time measurement 
representation for design model improvements. The use cases 
are based on the data model of the “Simulator for Assembly 
Workshops” (SAW) [14] and compare the performance of an 
ontology with and without OAs. The evaluation showed that 
OAs made the data collection in the ontology for decision 
support more efficient in the study context, since the OAs 
result in a smaller ontology for the tasks in the use cases. 

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes related work on system integration and 
ontologies. Section 3 describes the industry use case and Sec-
tion 4 derives research issues. Section 5 introduces the OA 
approach, while Section 6 evaluates the approach and dis-
cusses the results. Finally, Section 7 concludes the paper and 
identifies further work. 

II. RELATED WORK 
This section summarizes related work on system integration 

and ontologies for semantic integration to reconcile different 
views of stakeholders on system data. 



A. Integration of Heterogeneous Systems   
System integration is the task to combine a range of smaller 

systems to appear as one big system. There are several levels 
at which system integration could be performed [3], but there 
is so far no standardized integration process that explains how 
to integrate systems in general. 

Typical integration solutions focus either on technical het-
erogeneity (how to connect systems that use different plat-
forms or protocols) or on semantic heterogeneity (how to 
translate data in messages between systems that use different 
data formats or terminologies). In order to cope with technical 
heterogeneity on service level middleware technology [9] 
supports syntactical transformation between services, while 
the semantic heterogeneity of services can be addressed with a 
common data schema [12]. Limitations of these integration 
approaches are: 1. The need for a common data schema [12], 
which is hard and time-consuming to negotiate, sometimes 
impossible if stakeholders continue to disagree. 2. The need 
for integration over heterogeneous middleware technologies 
(with different APIs or network architecture styles) implies 
the development of static and therefore inflexible wrappers 
between each combination of middleware technologies, and 
thus increases the complexity of communication. 

Semantic integration is defined as the solving of problems 
originating from the intent to share data across disparate and 
semantically heterogeneous data [12]. These problems include 
the matching of ontologies or schemas, the detection of dupli-
cate entries, the reconciliation of inconsistencies, and the 
modelling of complex relations in different sources [19]. Over 
the last years, semantic integration became increasingly cru-
cial to a variety of information-processing applications and 
has received much attention in the web, database, data-mining 
and AI communities [6]. One of the most important and most 
actively studied problems in semantic integration is establish-
ing semantic correspondences (also called mappings) between 
vocabularies of different data sources [7]. 

B. Ontologies for Semantic Integration 
An ontology is a representation vocabulary for a specific 

domain or subject matter, like production automation. More 
precisely, it is not the vocabulary as such that qualifies as an 
ontology, but the (domain-specific) concepts that the terms in 
the vocabulary are intended to capture [5]. Goh [11] identified 
three main categories of semantic heterogeneities in the con-
text of data integration that can appear: confounding conflicts 
(e.g., equating concepts are actually different), scaling con-
flicts (e.g., using different units for the same concept), and 
naming conflicts (e.g., synonyms and homonyms). 

Noy [18] identified three major dimensions of the applica-
tion of ontologies for supporting semantic integration: the task 
of finding mappings (semi-)automatically, the declarative 
formal representation of these mappings, and reasoning using 
these mappings. There exist two major architectures for map-
ping discovery between ontologies: 1. It is possible to create a 
general upper ontology which is agreed upon by developers of 
different applications. Two examples for ontologies that are 
built specifically with the purpose of being formal top-level 

ontologies are the Suggested Upper Merged Ontology (SUMO) 
[17] and DOLCE [10]. 2. There are approaches comprising 
heuristics-based or machine learning techniques that use vari-
ous characteristics of ontologies (e.g., structure, concepts, 
instances) to find mappings. These approaches are similar to 
approaches for mapping XML schemas or other structured 
data [4, 6]. The declarative formal representation of mappings 
is facilitated by the higher expressive power of ontology lan-
guages which provide the opportunity to represent mappings 
themselves in more expressive terms.  

Uschold and Gruninger [22] identified four main categories 
of ontology application to provide a shared and common un-
derstanding of a domain that can be communicated between 
people and application systems [8]: Given the vast number of 
non-interoperable tools and formats, a given company or or-
ganization can benefit greatly by developing their own neutral 
ontology for authoring, and then developing translators from 
this ontology to the terminology required by the various target 
systems. While it is safe to assume there will not be global 
ontologies and formats agreed by all possible stakeholders, it 
is nevertheless possible to create an ontology to be used as a 
neutral interchange format for translating among various for-
mats. There is a growing interest in the idea of “Ontology-
Driven Software Engineering” in which an ontology of a 
given domain is created and used as a basis for specification 
and development of some software [19]. The benefits of on-
tology-based specification are best seen if there is a formal 
link between the ontology and the software. To facilitate 
search, an ontology is used as a structuring device for an in-
formation repository (e.g., documents, web pages, names of 
experts); this supports the organization and classification of 
repositories of information at a higher level of abstraction than 
is commonly used today. 

As alternative approach for semantic integration of system 
models the infrastructure of Model-Driven Architecture 
(MDA) [15] provides architecture for creating models and 
meta-models, defining transformations between these models, 
and managing meta-data. Although the semantics of a model 
is structurally defined by its meta-model, the mechanisms to 
describe the semantics of the domain are rather limited com-
pared to machine-understandable representations using, e.g., 
knowledge representation languages like RDF2 or OWL3. In 
addition, MDA-based languages do not have a knowledge-
based foundation to enable reasoning (e.g., for supporting 
quality assurance), which ontologies provide [2]. Beyond tra-
ditional data models, like UML class diagrams or entity rela-
tionship diagrams, ontologies provide methods for integrating 
fragmented data models into a common model without losing 
the notation and style of the individual models [13].  

Seidenberg and Rector [21] proposed web ontology seg-
mentation to counter decreasing ontology performance when 
ontology size increases. The algorithm to make ontology seg-
mentation is similar to our approach, but we extend the usage 
of ontology areas for more stakeholders and volatilities.    

                                                 
2 Resource Description Framework: http://www.w3.org/RDF/ 
3 Web Ontology Language: http://www.w3.org/2007/OWL 



 
Figure 1: Sources of semantic gaps between stakeholders: domain layers, design-/run-time views;  

the data model contains common domain concepts to bridge semantic gaps. 

III. INDUSTRY USE CASE 
In cooperation with industry partners in the production 

automation domain we conducted the project “Simulator for 
Assembly Workshops” (SAW) [14], which simulates complex 
reconfigurable production automation systems by scheduling 
sequences of transport and machine tasks over 100 times 
faster than the actual hardware4. The SAW simulator has been 
validated with real hardware components to ensure simulation 
validity for real-world production automation systems. In the 
SAW context stakeholders from different backgrounds work 
together and could benefit from better automated access to 
each others data models which is currently only possible via 
the stakeholders themselves as the data models are not well 
integrated. 

Figure 1 illustrates sources of semantic gaps between 
stakeholders: stakeholder domain layers with different local 
terminologies; and design-/run-time views which are semanti-
cally not well connected. The data model, in our case an on-
tology model (the Engineering Knowledge Base  (EKB) [16]), 
contains common domain concepts to bridge the semantic 
gaps between stakeholder terminologies and design-/run-time 
views. 

The three stakeholder layers in Figure 1 are: a) the business 
layer (B) for production planning to fulfil customer orders by 
assigning optimal work orders to the workshop; b) the work-
shop layer (W) for coordinating the complex system of trans-
port elements and machines to assemble smaller basic prod-
ucts into larger more comprehensive products according to the 
work orders; and c) the operation layer (O) for monitoring the 
individual transport system elements and machines to ensure 
their contributions to the workshop tasks. Those three layers 
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are divided into two parts based on the time those layers 
worked on, namely design time (development) and run time 
(usage). 

Figure 1 (right hand side) illustrates part of the data model 
that represents common domain concepts for the uses cases in 
UML-class-diagram style notation. The bottom box of each 
data element shows which stakeholder layer (B, W, and O) 
needs this data element to conduct their tasks and when: at 
Design Time (DT) or Run Time (RT). 

From the SAW project we derived the following use cases 
that illustrate semantic gaps between stakeholders and how to 
overcome these gaps using ontology-based approaches.  

UC-1. Translation between local stakeholder terminologies. 
The business manager on the business layer receives customer 
orders and schedules work tasks to the coordinator in the 
workshop layer. While they have a defined interface for ex-
changing work task information, they use local terminologies 
for concepts that are only occasionally needed to resolve 
scheduling issues, e.g., reference to specific customer orders if 
limited workshop capacity does not allow to fulfil all work 
tasks in a shift and negotiation on which tasks have higher 
priority are necessary to determine which customer orders will 
be fulfilled. Because the stakeholders use different terminol-
ogies, translations are necessary to automate references to 
customer orders between stakeholders in business and work-
shop layers.  

UC-2. Design context for run-time data interpretation. The 
workshop operator at run time needs to resolve the meaning of 
multiple warnings from systems to determine his best next 
actions. Systems may be connected by design relationships 
like process, communication or energy networks, which could 
be evaluated automatically, if the run-time warnings were 
related to design-time knowledge, which is currently available 
from the operation experts but not in machine-understandable 
form like an engineering knowledge base.  



UC-3. Run-time measurement data representation and 
analysis for design model improvements. If an engineering 
knowledge base is available to support run-time decisions 
with design knowledge, it is easy to also provide all kinds of 
run-time measurements linked to design elements, e.g., actual 
capacity of infrastructure, to iteratively improve the accuracy 
of design estimates with feedback from run time. 

IV. RESEARCH ISSUES 
The general idea of Ontology Areas (OAs) is to structure a 

comprehensive ontology into smaller building blocks with the 
following benefits for the designer and user of the ontology:  
• A smaller ontology based on OAs that contains the mini-

mal necessary knowledge for a specific task can be se-
lected from a comprehensive ontology to facilitate more 
efficient use and change. 

• We expect a smaller ontology (consisting of selected OAs) 
to exhibit lower cognitive complexity for designers who 
work with ontologies to make tools that support the 
automation of stakeholder tasks. 

• Specific OAs can contain the more volatile ontology ele-
ments and thus make the design of the overall ontology 
more stable against changes. 

As measurement criteria for evaluation we use the size of 
an ontology (and an OA) by counting the number of facts and 
relationships. In our study context the comprehensive ontol-
ogy consists of: a) the production automation domain concepts 
(i.e., data model in Fig. 1) for design-time and run-time ele-
ments; and b) stakeholder extensions to the data model, such 
as local terminologies and mappings, for all stakeholders. 

We used the following guidelines to design the OAs: a) 
concepts that a particular stakeholder (in business, workshop, 
or operation layer) needs to fulfil his typical tasks in order to 
achieve cohesiveness of the OAs; b) discern between common 
domain concepts and local add-ons of a stakeholder (such as 
terminology), which may change in different project contexts; 
c) keeping apart more stable design-time concepts from more 
volatile run-time concepts; and d) structuring volatile run-time 
data by manageable time intervals depending on the frequency 
of data elements’ change. According to these guidelines ex-
amples for concrete OAs are: the design-time concepts of a 
business stakeholder and the run-time terminology of a work-
shop stakeholder.  

From the use cases we derive the following research issues 
(RIs) to investigate the benefits of an ontology structured with 
OAs compared to an ontology without OAs. 

UC-1. Translation between local stakeholder terminol-
ogies. The ontology supports each role by allowing to use 
their local terminology to communicate with other stake-
holders. For this task sufficient OAs need to contain for the 
communicating stakeholders: the common domain concepts in 
their universe of discourse (see also in Fig. 1 the data elements 
and their link to associated stakeholders), local terminologies, 
mappings between local terminology elements and common 
domain concepts (on class level).  

RI-1a: Compare the complexity (size) of the minimal on-
tology with OAs to the complexity of the overall ontology in 
the study context.  

RI-1b: Compare the efficiency of the minimal ontology 
with OAs to the efficiency of the overall ontology in the study 
context to conduct the translation task.  

The other use cases address benefits from making links be-
tween design-time and run-time data elements available at run 
time.  

UC-2. Provision of design context for run-time data in-
terpretation. While typical run-time applications do not have 
access to comprehensive design models on system level, there 
are benefits for tasks like planning and defect finding if in 
addition to the signals from individual machines there are also 
relationships from design time models available, such as in-
formation which machines are linked as they may be part of a 
common process, transport system neighbourhood, or infor-
mation network branch.  

RI-2: Determine the minimal (cognitive) complexity of OAs 
to support a specific task more efficiently, such as filtering 
failure warnings from machines that are connected by design 
model relationships in a non-obvious way. Compare the result 
with OAs to the (cognitive) complexity of using a comprehen-
sive ontology. 

UC-3. Run-time measurement data representation and 
analysis for design model improvements. In the study con-
text the collection of run-time data points, e.g., on process 
characteristics and quality of service of the infrastructure, 
helps to provide data for future design improvements, e.g., for 
more realistic planning and more efficient system configura-
tions. The designers and quality management personnel, who 
conduct the data analysis procedures, often do not know in 
advance precisely which analysis functions they will need. 
Thus, a considerable amount of raw data would be beneficial 
to store in the ontology for querying design-time relationships 
and run-time data together. Unfortunately, even moderate data 
collection (10 data points) at reasonable frequency (e.g., one 
measurement every second) leads over a shift of 8 hours to a 
number of run-time data elements that easily exceeds the size 
of the design-time data elements in the ontology. 

OAs that are designed to hold all measurement instances of 
a data element in a certain time interval (e.g, one minute) al-
low to keep the complexity of the ontology needed for analy-
sis manageable: Only the OAs that contain relevant run-time 
measurements for a given analysis need to be considered.  

RI-3a: Determine the minimal complexity of OAs to sup-
port a specific data analysis task more efficiently, such as cal-
culating process characteristics. Compare the result with OAs 
to the (cognitive) complexity of using a whole ontology. 

RI-3b: Compare the efficiency of the minimal ontology 
with OAs to the efficiency of the overall ontology in the study 
context to conduct the data analysis task 

V. ONTOLOGY AREAS FOR BRIDGING SEMANTIC GAPS 
In this Section we explain in more detail how to address the 

use cases with an ontology that uses OAs as basis for the 
evaluation of the RIs in Section 6. 



An ontology area is a subset of ontology as a building block 
that can solve a certain task. The ontology can be broken into 
ontology areas based on several aspects, for example by the 
time, volatility, layer and roles. Figure 1 shows the break 
down of ontology into several ontology areas based on the 
stakeholder layers (business, workshop, operation) and time 
when models are mostly used (design time and run time). 
Some parts of the data mode are much more volatile than oth-
ers, e.g., run-time process measurements compared to design-
time workshop layout. For example, each data point measured 
once a second in a shift that takes 8 hours produces around 
30,000 data point instances, which need to be reduced by sta-
tistical methods or will take considerably storage space.  

To make an OA from the whole ontology, we can follow 
this basic algorithm. First, define a task that is needed to be 
solved by the stakeholder. Second, find related classes for 
doing the task. Third, find classes that linked to the classes in 
step two. Fourth, drop other classes that are not needed and 
save as a new ontology. Also, we can reconstruct the whole 
ontology from the ontology areas, by merging them together 
into one ontology by using ontology tool like Protégé.  

We illustrate in three use cases (UC-1 to UC-3) how OAs 
help reduce the complexity of the ontology for bridging se-
mantic gaps in production automation systems.  

UC-1. Translation between local stakeholder terminol-
ogies. The stakeholders of the production automation systems 
need to work together to achieve their goal. A common data 
schema is not possible because the stakeholders usually use 
different data formats, local terminologies and tools to access 
the data from the system. The ontology (EKB – Engineering 
Knowledge Base) plays a role as a common domain concept, 
where the local terminologies from the stakeholders will be 
mapped to. By mapping each local terminology to the ontol-
ogy, the system can translate the local terminologies from one 
stakeholder to the other stakeholders. The translation could be 
the name of function, some names in the argument of the 
function, different data format, or the meaning of some pa-
rameters. However, the complexity of the ontology may in-
crease when the number of the terminologies and the stake-
holders is also increases, since the ontology should store all 
terminologies, the mappings and the common concepts.  

By using the ontology areas, the stakeholder can take a 
small part of the ontology that he really cares and solving his 
task with the same results but less complexity than by using 
the full ontology. The example is illustrated on figure 2. 

 
Figure 2. Translation between Business Terminology  

and Workshop Terminology. 

The business stakeholder has a local terminology “Cli-
entContract”, while the workshop stakeholder has a local 
terminology “BusinessOrder”. Both have a common con-
cept to class CustomerOrder in the Ontology Areas. Then, 
both terminologies will be mapped to the class CustomerOrder 
as mention in Listing 1a. 

Listing 1a. Mapping terminologies to the common concept. 

mapping('ClientContract','CustomerOrder'). 
mapping('BusinessOrder','CustomerOrder'). 

From the mappings above, we can have a translation be-
tween two local terminologies by using rule on Listing 1b. 
The query and result can be seen on Listing 1c. 

Listing 1b. Simple translation rules. 

translate(Term1,Term2) :- 
 mapping(Term1,CommonConcept), 
 mapping(Term2,CommonConcept), 
 not(Term1 = Term2). 

Listing 1c. Translation result. 

translate(X,Y). 
X = 'ClientContract' 
Y = 'BusinessOrder' 

The translation is just one example for translations in gen-
eral. OAs for this use case would just consider the parts of the 
ontologies for the stakeholders involved (see Figure 2): stake-
holder concepts, their local terminologies and mappings, 
which can more easily be added to and removed from an on-
tology as stakeholders change in a particular context. The 
evaluation for this use case will be explained on section 6.  

UC-2. Provision of design context for run-time data in-
terpretation. The current models of the production automa-
tion systems primarily are used at design time and do no sup-
port run-time activities (e.g. GUI and reports) with a semantic 
description of exchanged data. The information at run time is 
usually local to a system part such as a machine and consists 
of efficient codes that are not easily understandable for non-
experts and not connected to the information in other system 
parts or processes, which hinders the automatic analysis of 
local messages coming from several machines. For example 
the operator receives information on machine warnings and 
failures but can not automatically connect these messages with 
design-time information on the machine and the other ma-
chines and processes the machine is part of. Thus, the design 
time information can enrich the information at run-time to 
compare the outcomes of decision alternatives, e.g., which 
machine warning to address first. 

By using an ontology, we can make connections between 
run-time information and design-time models automatically. 
OAs reduce the complexity of the ontology by taking a subset 
of the ontology, which is related to the stakeholder task. For 
example, the workshop stakeholder gets several machine fail-
ure messages from run-time and he wants to know whether 
there is any relationship between those failure messages. With 
design knowledge, the system can filter out redundant ma-
chine failure messages that would distract the workshop 



stakeholder. From the design knowledge, the workshop person 
knows how the machines are connected so it is possible to 
detect the original source of several machine failure messages.  

The illustration is as follows. From the run-time informa-
tion, the workshop person gets at least three machine failure 
messages as follows. 

Listing 2a. Run-time machine failure messages. 

MachineFailure(Failure/warning code, machine instance). 
MachineFailure(‘FAIL041’,‘MAC500’). 
MachineFailure(‘FAIL053’,‘MAC610’). 
MachineFailure(‘FAIL057’,‘MAC620’). 

To know the meaning and the relationship between the ma-
chine failure messages, he should check with the design time 
information, which contains such data like these. 

Listing 2b. Machine instances. 

Machine(machine instance, list of pallets in buffer). 
Machine(‘MAC500’,[P110, P130]). 
Machine(‘MAC610’,[P120]). 
Machine(‘MAC620’,[P140]). 
 
ConnectedTo(machine instance, machine instance). 
ConnectedTo(‘MAC500’,’MAC610’). 
ConnectedTo(‘MAC500’,’MAC620’). 

By using the rules below, he can find the original source of 
the machine failures. One machine is predecessor for another 
machine if it is connected to the other machine or a predeces-
sor of the other machine, recurrently. In our example, we can 
identify the machine “MAC500’ as the original source of the 
machine failure. 

Listing 2c. Rules to find original source failures. 

predecessor(X,Y) :- ConnectedTo(X,Y). 
predecessor(X,Y) :- ConnectedTo(X,Z), 
    predecessor(Z,Y). 

This is a simplified version of many real-world use cases 
that illustrates how the analysis of design time can support 
run-time decision making. In general, the OAs can help filter-
ing certain run-time information that needed by the user and 
then connect to the related design time information. OAs in 
this case would provide the parts of the ontologies that are 
relevant for the machines and their relationships that the op-
erator needs for his tasks. In Figure 1 the annotation of the 
data elements (bottom box for each data element) shows 
which stakeholder will need this data elements, which allows 
selecting the relevant data elements for the OAs of each stake-
holder. The evaluation will be explained on section 6. 

UC-3. Run-time measurement data representation and 
analysis for design model improvements. Run-time meas-
urement information can be used to make design time infor-
mation more accurate. Volatile information like run-time 
measurement can produce large amounts of data which would 
make a single ontology unnecessary large and slow down the 
performance of the ontology. The need for storing a high vol-
ume of run-time measurement data in the ontology occurs if 
the concrete future statistical analysis procedures are not 
known at the time of measurement.  

Partitioning of the ontology in areas of similar volatility al-
lows building partial ontologies for the task or query at hand. 
Run-time measurement at the frequency of 1 data point per 
second provides 30,000 data points of shift of 8 hours. If this 
is too much information for the ontology to hold, it is possible 
to define OAs for smaller time windows, which allow includ-
ing the data for a certain time frame to be loaded into the on-
tology for data analysis as needed without exceeding the ca-
pacity of the ontology.  

Semantic gaps between run-time measurement and design-
time information occur when we have data elements from the 
interface of the machine at run time, but there is no machine-
understandable documentation for the design of the interface. 
To solve this problem, we first give meaning to run-time data 
that are needed to be stored in the ontology and then provide a 
link from run-time to design-time semantics.  

For example, to find out the maximum process time of cer-
tain machine functions, we can measure the process duration 
of that machine function in one shift, so we collect sufficient 
and still manageable data. The measurement result is an event 
named “process” that consists of the id, the batch number, 
status and timestamp of machine function. Listing 3a shows 
several measurement results that can be obtained by filtering 
run time data. The real data themselves is a very long list.  

Listing 3a. Run-time event data with semantic annotation. 

% process(machine function id, batch number, status, timestamp) 
process(‘MF1’,’B-100’,’start’,2009-02-03 T 10:01:06.01) 
process(‘MF1’,’B-100’,’stop’,2009-02-03 T 10:01:06.11) 
process(‘MF2’,’A-200’,’start’,2009-02-03 T 10:01:06.12) 
process(‘MF1’,’B-101’,’start’,2009-02-03 T 10:01:06.13) 
process(‘MF1’,’B-101’,’stop’,2009-02-03 T 10:01:06.21) 
process(‘MF2’,’A-200’,’stop’,2009-02-03 T 10:01:06.24) 

 To calculate the maximum process time of certain machine 
function, first we should calculate each process time by using 
predicate “process_time” to find the difference between the 
timestamp of “stop” status and the related timestamp of “start” 
status from the same machine function and batch number, and 
the keep it in the list using “list_of_process_time” predicate. 
Then with using the predicate “maxprocess” we will find the 
maximum value of process time of certain machine function 
(MFun) from the list of process time. 

Listing 3b. Example analysis rule on run-time data. 

max(X,Y,X) :- X >= Y. 
max(X,Y,Y) :- X < Y. 
maxlist([X],X). 
maxlist([X,Y|Tail],Max) :-  
maxlist([Y|Tail],MaxTail),max(X,MaxTail,Max). 
process_time(MF,SN,T) :- 
  process(MF,SN,start,X), 
  process(MF,SN,stop,Y), 
  T is Y - X. 
list_of_process_time(List,MFun) :- 
findall(T,(process_time(MF,SN,T),MF = 
MFun),List). 
maxprocess(MFun,T) :- 
  list_of_process_time(List,MFun), 
  maxlist(List,T). 



For query, for example we want to know the maximum 
process time of ‘MF1’. The result can be seen on Listing 3c. 

Listing 3c. Result of data analysis. 

maxprocess('MF1',T). 
T = 0.1 

The machine function entity in design time consists of the 
id and process time attributes. Usually the values of process 
time attributes come from estimation, but by using run-time 
measurement on process time, we can compare the previous 
design-time estimates to actual run-time data analysis for re-
search on design improvements.  

The illustrating example above is simple enough to conduct 
statistical analysis at run time, but for more complex statistical 
analyses, a solution for storing large amounts of data in an 
ontology may be necessary, which would inflate ontology size 
and decrease the ontology reasoning performance. OAs allow 
to manage stacks of run-time data elements and keep the size 
of ontology within well-performing capacity ranges.  

VI. EVALUATION AND DISCUSSION 
We have implemented the OAs from the SAW ontology us-

ing Protégé 3.3.1. The SAW ontology consists of 24 classes 
and 3,000 instances from the simulation of production auto-
mation system. The evaluation will compare the measurement 
of the whole ontology and the ontology areas for three differ-
ent use cases explained in section 5, as follows. 

UC-1: Translation between local stakeholder terminol-
ogies. We compare the complexity (size) of the minimal on-
tology with OAs to the complexity of the overall ontology in 
the study context. For the minimal ontology with OAs, the 
business and workshop stakeholders have local terminologies 
of 300 and 400 words, respectively. Both need 100 words to 
communicate with each other. There are 200 to 700 data ele-
ments representing common knowledge, and 200 words for 
mapping from both local terminologies to the common con-
cepts. Totally 1,100 to 1,600 entities are needed for the OAs. 

 Meanwhile, the comprehensive ontology for 6 stake-
holders consists of around 1,800 words for local terminologies 
and around 300 words to communicate with each other. There 
are 1,600 words of common knowledge, and 600 to 1,800 
words for mapping of all local terminologies to common con-
cepts. In total, the comprehensive ontology consists of 4,200 
to 5,400 words. In this case, OAs can reduce the ontology size 
to 20 to 30 % of the comprehensive ontology. 

We can compare the efficiency of the minimal ontology 
with OAs to the efficiency of the whole ontology in conduct-
ing the translation task as follows. To produce 100 words of 
translation results from 200 words of mapping, the OAs needs 
3 operators of query applying to those mapping.  

The comprehensive ontology can produce more transla-
tions (300 words) with 3 operators of query as well. But the 
query should be applied to more mapping (600 to 1,800 
words). With OAs we can reduce the size of mapping and 
make the operation faster. 

UC-2: Design time context for run-time decision making. 
For evaluation we determine the minimal (cognitive) com-

plexity of OAs to support a specific task more efficiently, 
such as filtering failure warnings from machines that are con-
nected by design model relationships in a non-obvious way. 
After that, we will compare the result with OAs to the (cogni-
tive) complexity of using a comprehensive complexity. 

The cognitive complexity in this case is the number of data 
elements an operator needs to check in order to address his 
task. By implementing the OA to the comprehensive ontology, 
the operator can get only 3 classes to check, from 16 classes 
of the whole ontology. The size of ontology is also reduced, 
from 533 KB to 90 KB by applying the OA. So the operator 
will have smaller number of data elements to be connected in 
this case, by applying the OA. 

UC-3: Run-time measurement and analysis for design 
improvement. For evaluation we will determine the minimal 
complexity of OAs to support a specific data analysis task 
more efficiently, such as calculating process characteristics. 
Then we will compare the result with OAs to the (cognitive) 
complexity using a comprehensive complexity. 

In the OAs of the specific task, for 1 volatile entity the run-
time measurement consists of 30,000 data points per shift. In 
the overall ontology, there may be many more, e.g., 300,000, 
data points in one shift. By using the OAs, the user can focus 
only on entity that he needs, and thus reduce the complexity of 
data handling considerably.  

The efficiency of the minimal ontology with OAs is com-
pared to the efficiency of the overall ontology in the case to 
conduct the data analysis task as follows. In the OA, to obtain 
5 data points analysis, it needed to run 3 operators of query 
over 30,000 data points at one shift. Hence 18,000 operations 
on data points are needed to obtain one of the measurements.  

In the whole ontology, to obtain 20 data points analysis, it 
needed to run 3 operators of query over 300,000 data points at 
one shift. Hence 45,000 operations on data points are needed 
to obtain one of the measurements. OA is notably more effi-
cient than overall ontology. 

Lesson learned. From the experiences with these use cases, 
we can learn the following lessons.  

Building a smaller ontology for a task. As OAs allow fo-
cusing on the content of interest for a stakeholder task, we 
could show that the resulting ontology is considerable smaller. 
A smaller ontology is often also more efficient to handle and 
allows tackling tasks that use a particularly large number of 
data elements (e.g., run-time measurements in UC-3). 

Focus stakeholders on relevant data elements. The combi-
nation of OAs, design-time, and run-time data elements al-
lowed filtering relevant data elements for stakeholders, which 
would not be possible without the combination. Thus the OA 
approach helped lower the cognitive complexity for stake-
holders by providing just the relevant subset of the compre-
hensive ontology. 

Version management for ontology areas. With the OA con-
cept we can flexibly build task-oriented ontologies based on 
different criteria (like volatileness, layers, roles). It is even 
possible to compare different versions of the same OA (e.g., 
production automation system designed with different pa-
rameter settings) to compare the run-time reactions to from 



changing design parameters. However, this ability also raises 
the need for better version management for OAs to ensure the 
building of consistent ontologies for specific tasks. 

VII. CONCLUSION AND FURTHER WORK 
Ontologies support the translation between stakeholder lo-

cal terminologies via common domain concepts, in our case 
production automation concepts. Typically, the ontology 
models become very large and complex compared to the basic 
data model (such as used in a data base to automate run-time 
processes) if they include several aspects on a domain and 
some parts of the data model are volatile. In this paper, we 
proposed a data modeling approach based on ontology build-
ing blocks, so-called “Ontology Areas” (OAs), which allow 
solving tasks with smaller parts of the overall ontology. We 
evaluated the proposed approach with use cases from the pro-
duction automation domain. Major result in the study context 
is that OAs improved the efficiency of data collection task for 
decision making by lowering the cognitive complexity for 
designers and users of the ontology. 

Further work. We see further research in the following di-
rections. Effort for OA design and use. While OAs make a 
comprehensive ontology, which stores and uses engineering 
knowledge both at design time and run time, more manage-
able, their application needs the effort of designers for struc-
turing the overall ontology and for building task-specific 
smaller ontologies. Thus we will conduct empirical studies on 
the effort needed to design and use ontologies with OAs. 

Guidelines for the OA approach. While we found OAs use-
ful to manage a large and complex ontology, we see the need 
for guidelines for the application the OA approach when de-
signing a new ontology as well as for structuring already es-
tablished ontologies with OAs to improve their performance. 

Maintenance effort. Particularly for ontologies which 
should be changed by many users concurrently, we see a po-
tential advantage of the concept of OAs, as areas with differ-
ent rates of change can be easily separated, simplifying the 
checking of models for consistency etc. In the context of our 
case study this could be measuring the effort for typical 
changes, such as a new workshop layout, new machines, or 
new connections between machines. 
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