
Bridging Semantic Gaps Between Stakeholders
in the Production Automation Domain with Ontology Areas

Thomas Moser, Wikan Danar Sunindyo, Stefan Biffl
Institute of Software Technology and Interactive Systems, Vienna University of Technology

Favoritenstrasse 9-11/188, Vienna, Austria
{thomas.moser, wikan.sunindyo, stefan.biffl}@tuwien.ac.at

Abstract—Stakeholders from several domains with local termi-
nologies have to work together to develop and operate software-
intensive systems, like production automation systems. Ontolo-
gies support the translation between local terminologies via
common domain concepts. Unfortunately, the ontology models
can become large and complex if they include several aspects on
a domain and some parts of the data model are volatile. In this
paper, we propose a data modeling approach to support ontology
users based on ontology building blocks, so-called “Ontology
Areas” (OAs), which allow solving tasks with smaller parts of the
overall ontology. We evaluate the proposed approach with use
cases from the production automation domain: translation be-
tween stakeholder roles to support design-time and run-time
decision making. Major result in the study context is that OAs
improved the efficiency of data collection for decision making.

I. INTRODUCTION
The integration of business processes and IT systems in

homogeneous environments (i.e., consistent data formats and
terminology) is supported by well-established approaches like
data integration using Scheer’s ARIS for CIM [20]. However,
in more heterogeneous environments with a range of data for-
mats and local terminologies like the production automation
domain, typically stakeholders from several areas (e.g., busi-
ness experts, software engineers and electrical engineers)
work together to develop and operate software-intensive sys-
tems. A homogenization of these environments is often not
achievable, if the stakeholders come from different organiza-
tional backgrounds or organizations change over time due to
mergers and acquisitions. The precondition for successful se-
mantic integration is a common understanding on the relevant
concepts in the problem domain of the project.

An example for a collection of common problem domain
concepts is the Enterprise-Control System Integration1 (ECSI)
standard [1] for developing automated interfaces between en-
terprise and control systems. The objectives of ECSI are to
provide a) a consistent terminology as foundation for supplier
and manufacturer communications, b) consistent information
models, and c) consistent operations (process) models, which
are the basis for clarifying application functionality and how
information shall be used.

However, a standard like ECSI can only cover parts of the
problem domain without getting too complex and hard to use.
Further, many key players in the production automation do-
main currently do not follow this standard, which often hin-
ders the cooperation of stakeholders in projects, since trans-

1 http://www.isa-95.com

formations between stakeholder terminologies to overcome
semantic gaps between the stakeholders need to be conducted
by scarce experts or carefully hand-crafted.

Ontologies are flexible open-world data models for knowl-
edge representation, which store information in machine-
understandable notation [10]. Therefore, ontologies can help
to bridge semantic gaps between partial data models by pro-
viding mappings between them via common domain concepts.
Ontologies usually capture problem-domain-specific informa-
tion which can be reused later. Due to their concurrent devel-
opment ontologies need to be checked for inconsistencies to
stay useful. However, ontologies in practice usually have to
combine several view points and thus get large and complex,
particularly, if the ontology contains volatile domain elements,
such as run-time data.

In this paper, we propose a data modelling approach that
helps structure ontologies with ontology building blocks, so-
called “Ontology Areas” (OAs). An OA is a meaningful part
of an ontology for a stakeholder, which helps ontology users
managing a complex ontology. The combination of all needed
OAs represents the overall ontology for supporting the origi-
nal engineering process.

We evaluate the proposed OA approach with use cases in
the production automation domain: 1. Translation between
local stakeholder terminologies; 2. Provision of design context
for run-time data interpretation; and 3. Run-time measurement
representation for design model improvements. The use cases
are based on the data model of the “Simulator for Assembly
Workshops” (SAW) [14] and compare the performance of an
ontology with and without OAs. The evaluation showed that
OAs made the data collection in the ontology for decision
support more efficient in the study context, since the OAs
result in a smaller ontology for the tasks in the use cases.

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes related work on system integration and
ontologies. Section 3 describes the industry use case and Sec-
tion 4 derives research issues. Section 5 introduces the OA
approach, while Section 6 evaluates the approach and dis-
cusses the results. Finally, Section 7 concludes the paper and
identifies further work.

II. RELATED WORK
This section summarizes related work on system integration

and ontologies for semantic integration to reconcile different
views of stakeholders on system data.

A. Integration of Heterogeneous Systems
System integration is the task to combine a range of smaller

systems to appear as one big system. There are several levels
at which system integration could be performed [3], but there
is so far no standardized integration process that explains how
to integrate systems in general.

Typical integration solutions focus either on technical het-
erogeneity (how to connect systems that use different plat-
forms or protocols) or on semantic heterogeneity (how to
translate data in messages between systems that use different
data formats or terminologies). In order to cope with technical
heterogeneity on service level middleware technology [9]
supports syntactical transformation between services, while
the semantic heterogeneity of services can be addressed with a
common data schema [12]. Limitations of these integration
approaches are: 1. The need for a common data schema [12],
which is hard and time-consuming to negotiate, sometimes
impossible if stakeholders continue to disagree. 2. The need
for integration over heterogeneous middleware technologies
(with different APIs or network architecture styles) implies
the development of static and therefore inflexible wrappers
between each combination of middleware technologies, and
thus increases the complexity of communication.

Semantic integration is defined as the solving of problems
originating from the intent to share data across disparate and
semantically heterogeneous data [12]. These problems include
the matching of ontologies or schemas, the detection of dupli-
cate entries, the reconciliation of inconsistencies, and the
modelling of complex relations in different sources [19]. Over
the last years, semantic integration became increasingly cru-
cial to a variety of information-processing applications and
has received much attention in the web, database, data-mining
and AI communities [6]. One of the most important and most
actively studied problems in semantic integration is establish-
ing semantic correspondences (also called mappings) between
vocabularies of different data sources [7].

B. Ontologies for Semantic Integration
An ontology is a representation vocabulary for a specific

domain or subject matter, like production automation. More
precisely, it is not the vocabulary as such that qualifies as an
ontology, but the (domain-specific) concepts that the terms in
the vocabulary are intended to capture [5]. Goh [11] identified
three main categories of semantic heterogeneities in the con-
text of data integration that can appear: confounding conflicts
(e.g., equating concepts are actually different), scaling con-
flicts (e.g., using different units for the same concept), and
naming conflicts (e.g., synonyms and homonyms).

Noy [18] identified three major dimensions of the applica-
tion of ontologies for supporting semantic integration: the task
of finding mappings (semi-)automatically, the declarative
formal representation of these mappings, and reasoning using
these mappings. There exist two major architectures for map-
ping discovery between ontologies: 1. It is possible to create a
general upper ontology which is agreed upon by developers of
different applications. Two examples for ontologies that are
built specifically with the purpose of being formal top-level

ontologies are the Suggested Upper Merged Ontology (SUMO)
[17] and DOLCE [10]. 2. There are approaches comprising
heuristics-based or machine learning techniques that use vari-
ous characteristics of ontologies (e.g., structure, concepts,
instances) to find mappings. These approaches are similar to
approaches for mapping XML schemas or other structured
data [4, 6]. The declarative formal representation of mappings
is facilitated by the higher expressive power of ontology lan-
guages which provide the opportunity to represent mappings
themselves in more expressive terms.

Uschold and Gruninger [22] identified four main categories
of ontology application to provide a shared and common un-
derstanding of a domain that can be communicated between
people and application systems [8]: Given the vast number of
non-interoperable tools and formats, a given company or or-
ganization can benefit greatly by developing their own neutral
ontology for authoring, and then developing translators from
this ontology to the terminology required by the various target
systems. While it is safe to assume there will not be global
ontologies and formats agreed by all possible stakeholders, it
is nevertheless possible to create an ontology to be used as a
neutral interchange format for translating among various for-
mats. There is a growing interest in the idea of “Ontology-
Driven Software Engineering” in which an ontology of a
given domain is created and used as a basis for specification
and development of some software [19]. The benefits of on-
tology-based specification are best seen if there is a formal
link between the ontology and the software. To facilitate
search, an ontology is used as a structuring device for an in-
formation repository (e.g., documents, web pages, names of
experts); this supports the organization and classification of
repositories of information at a higher level of abstraction than
is commonly used today.

As alternative approach for semantic integration of system
models the infrastructure of Model-Driven Architecture
(MDA) [15] provides architecture for creating models and
meta-models, defining transformations between these models,
and managing meta-data. Although the semantics of a model
is structurally defined by its meta-model, the mechanisms to
describe the semantics of the domain are rather limited com-
pared to machine-understandable representations using, e.g.,
knowledge representation languages like RDF2 or OWL3. In
addition, MDA-based languages do not have a knowledge-
based foundation to enable reasoning (e.g., for supporting
quality assurance), which ontologies provide [2]. Beyond tra-
ditional data models, like UML class diagrams or entity rela-
tionship diagrams, ontologies provide methods for integrating
fragmented data models into a common model without losing
the notation and style of the individual models [13].

Seidenberg and Rector [21] proposed web ontology seg-
mentation to counter decreasing ontology performance when
ontology size increases. The algorithm to make ontology seg-
mentation is similar to our approach, but we extend the usage
of ontology areas for more stakeholders and volatilities.

2 Resource Description Framework: http://www.w3.org/RDF/
3 Web Ontology Language: http://www.w3.org/2007/OWL

Figure 1: Sources of semantic gaps between stakeholders: domain layers, design-/run-time views;

the data model contains common domain concepts to bridge semantic gaps.

III. INDUSTRY USE CASE
In cooperation with industry partners in the production

automation domain we conducted the project “Simulator for
Assembly Workshops” (SAW) [14], which simulates complex
reconfigurable production automation systems by scheduling
sequences of transport and machine tasks over 100 times
faster than the actual hardware4. The SAW simulator has been
validated with real hardware components to ensure simulation
validity for real-world production automation systems. In the
SAW context stakeholders from different backgrounds work
together and could benefit from better automated access to
each others data models which is currently only possible via
the stakeholders themselves as the data models are not well
integrated.

Figure 1 illustrates sources of semantic gaps between
stakeholders: stakeholder domain layers with different local
terminologies; and design-/run-time views which are semanti-
cally not well connected. The data model, in our case an on-
tology model (the Engineering Knowledge Base (EKB) [16]),
contains common domain concepts to bridge the semantic
gaps between stakeholder terminologies and design-/run-time
views.

The three stakeholder layers in Figure 1 are: a) the business
layer (B) for production planning to fulfil customer orders by
assigning optimal work orders to the workshop; b) the work-
shop layer (W) for coordinating the complex system of trans-
port elements and machines to assemble smaller basic prod-
ucts into larger more comprehensive products according to the
work orders; and c) the operation layer (O) for monitoring the
individual transport system elements and machines to ensure
their contributions to the workshop tasks. Those three layers

4 Automation & Control Institute; http://www.acin.tuwien.ac.at

are divided into two parts based on the time those layers
worked on, namely design time (development) and run time
(usage).

Figure 1 (right hand side) illustrates part of the data model
that represents common domain concepts for the uses cases in
UML-class-diagram style notation. The bottom box of each
data element shows which stakeholder layer (B, W, and O)
needs this data element to conduct their tasks and when: at
Design Time (DT) or Run Time (RT).

From the SAW project we derived the following use cases
that illustrate semantic gaps between stakeholders and how to
overcome these gaps using ontology-based approaches.

UC-1. Translation between local stakeholder terminologies.
The business manager on the business layer receives customer
orders and schedules work tasks to the coordinator in the
workshop layer. While they have a defined interface for ex-
changing work task information, they use local terminologies
for concepts that are only occasionally needed to resolve
scheduling issues, e.g., reference to specific customer orders if
limited workshop capacity does not allow to fulfil all work
tasks in a shift and negotiation on which tasks have higher
priority are necessary to determine which customer orders will
be fulfilled. Because the stakeholders use different terminol-
ogies, translations are necessary to automate references to
customer orders between stakeholders in business and work-
shop layers.

UC-2. Design context for run-time data interpretation. The
workshop operator at run time needs to resolve the meaning of
multiple warnings from systems to determine his best next
actions. Systems may be connected by design relationships
like process, communication or energy networks, which could
be evaluated automatically, if the run-time warnings were
related to design-time knowledge, which is currently available
from the operation experts but not in machine-understandable
form like an engineering knowledge base.

UC-3. Run-time measurement data representation and
analysis for design model improvements. If an engineering
knowledge base is available to support run-time decisions
with design knowledge, it is easy to also provide all kinds of
run-time measurements linked to design elements, e.g., actual
capacity of infrastructure, to iteratively improve the accuracy
of design estimates with feedback from run time.

IV. RESEARCH ISSUES
The general idea of Ontology Areas (OAs) is to structure a

comprehensive ontology into smaller building blocks with the
following benefits for the designer and user of the ontology:
• A smaller ontology based on OAs that contains the mini-

mal necessary knowledge for a specific task can be se-
lected from a comprehensive ontology to facilitate more
efficient use and change.

• We expect a smaller ontology (consisting of selected OAs)
to exhibit lower cognitive complexity for designers who
work with ontologies to make tools that support the
automation of stakeholder tasks.

• Specific OAs can contain the more volatile ontology ele-
ments and thus make the design of the overall ontology
more stable against changes.

As measurement criteria for evaluation we use the size of
an ontology (and an OA) by counting the number of facts and
relationships. In our study context the comprehensive ontol-
ogy consists of: a) the production automation domain concepts
(i.e., data model in Fig. 1) for design-time and run-time ele-
ments; and b) stakeholder extensions to the data model, such
as local terminologies and mappings, for all stakeholders.

We used the following guidelines to design the OAs: a)
concepts that a particular stakeholder (in business, workshop,
or operation layer) needs to fulfil his typical tasks in order to
achieve cohesiveness of the OAs; b) discern between common
domain concepts and local add-ons of a stakeholder (such as
terminology), which may change in different project contexts;
c) keeping apart more stable design-time concepts from more
volatile run-time concepts; and d) structuring volatile run-time
data by manageable time intervals depending on the frequency
of data elements’ change. According to these guidelines ex-
amples for concrete OAs are: the design-time concepts of a
business stakeholder and the run-time terminology of a work-
shop stakeholder.

From the use cases we derive the following research issues
(RIs) to investigate the benefits of an ontology structured with
OAs compared to an ontology without OAs.

UC-1. Translation between local stakeholder terminol-
ogies. The ontology supports each role by allowing to use
their local terminology to communicate with other stake-
holders. For this task sufficient OAs need to contain for the
communicating stakeholders: the common domain concepts in
their universe of discourse (see also in Fig. 1 the data elements
and their link to associated stakeholders), local terminologies,
mappings between local terminology elements and common
domain concepts (on class level).

RI-1a: Compare the complexity (size) of the minimal on-
tology with OAs to the complexity of the overall ontology in
the study context.

RI-1b: Compare the efficiency of the minimal ontology
with OAs to the efficiency of the overall ontology in the study
context to conduct the translation task.

The other use cases address benefits from making links be-
tween design-time and run-time data elements available at run
time.

UC-2. Provision of design context for run-time data in-
terpretation. While typical run-time applications do not have
access to comprehensive design models on system level, there
are benefits for tasks like planning and defect finding if in
addition to the signals from individual machines there are also
relationships from design time models available, such as in-
formation which machines are linked as they may be part of a
common process, transport system neighbourhood, or infor-
mation network branch.

RI-2: Determine the minimal (cognitive) complexity of OAs
to support a specific task more efficiently, such as filtering
failure warnings from machines that are connected by design
model relationships in a non-obvious way. Compare the result
with OAs to the (cognitive) complexity of using a comprehen-
sive ontology.

UC-3. Run-time measurement data representation and
analysis for design model improvements. In the study con-
text the collection of run-time data points, e.g., on process
characteristics and quality of service of the infrastructure,
helps to provide data for future design improvements, e.g., for
more realistic planning and more efficient system configura-
tions. The designers and quality management personnel, who
conduct the data analysis procedures, often do not know in
advance precisely which analysis functions they will need.
Thus, a considerable amount of raw data would be beneficial
to store in the ontology for querying design-time relationships
and run-time data together. Unfortunately, even moderate data
collection (10 data points) at reasonable frequency (e.g., one
measurement every second) leads over a shift of 8 hours to a
number of run-time data elements that easily exceeds the size
of the design-time data elements in the ontology.

OAs that are designed to hold all measurement instances of
a data element in a certain time interval (e.g, one minute) al-
low to keep the complexity of the ontology needed for analy-
sis manageable: Only the OAs that contain relevant run-time
measurements for a given analysis need to be considered.

RI-3a: Determine the minimal complexity of OAs to sup-
port a specific data analysis task more efficiently, such as cal-
culating process characteristics. Compare the result with OAs
to the (cognitive) complexity of using a whole ontology.

RI-3b: Compare the efficiency of the minimal ontology
with OAs to the efficiency of the overall ontology in the study
context to conduct the data analysis task

V. ONTOLOGY AREAS FOR BRIDGING SEMANTIC GAPS
In this Section we explain in more detail how to address the

use cases with an ontology that uses OAs as basis for the
evaluation of the RIs in Section 6.

An ontology area is a subset of ontology as a building block
that can solve a certain task. The ontology can be broken into
ontology areas based on several aspects, for example by the
time, volatility, layer and roles. Figure 1 shows the break
down of ontology into several ontology areas based on the
stakeholder layers (business, workshop, operation) and time
when models are mostly used (design time and run time).
Some parts of the data mode are much more volatile than oth-
ers, e.g., run-time process measurements compared to design-
time workshop layout. For example, each data point measured
once a second in a shift that takes 8 hours produces around
30,000 data point instances, which need to be reduced by sta-
tistical methods or will take considerably storage space.

To make an OA from the whole ontology, we can follow
this basic algorithm. First, define a task that is needed to be
solved by the stakeholder. Second, find related classes for
doing the task. Third, find classes that linked to the classes in
step two. Fourth, drop other classes that are not needed and
save as a new ontology. Also, we can reconstruct the whole
ontology from the ontology areas, by merging them together
into one ontology by using ontology tool like Protégé.

We illustrate in three use cases (UC-1 to UC-3) how OAs
help reduce the complexity of the ontology for bridging se-
mantic gaps in production automation systems.

UC-1. Translation between local stakeholder terminol-
ogies. The stakeholders of the production automation systems
need to work together to achieve their goal. A common data
schema is not possible because the stakeholders usually use
different data formats, local terminologies and tools to access
the data from the system. The ontology (EKB – Engineering
Knowledge Base) plays a role as a common domain concept,
where the local terminologies from the stakeholders will be
mapped to. By mapping each local terminology to the ontol-
ogy, the system can translate the local terminologies from one
stakeholder to the other stakeholders. The translation could be
the name of function, some names in the argument of the
function, different data format, or the meaning of some pa-
rameters. However, the complexity of the ontology may in-
crease when the number of the terminologies and the stake-
holders is also increases, since the ontology should store all
terminologies, the mappings and the common concepts.

By using the ontology areas, the stakeholder can take a
small part of the ontology that he really cares and solving his
task with the same results but less complexity than by using
the full ontology. The example is illustrated on figure 2.

Figure 2. Translation between Business Terminology

and Workshop Terminology.

The business stakeholder has a local terminology “Cli-
entContract”, while the workshop stakeholder has a local
terminology “BusinessOrder”. Both have a common con-
cept to class CustomerOrder in the Ontology Areas. Then,
both terminologies will be mapped to the class CustomerOrder
as mention in Listing 1a.

Listing 1a. Mapping terminologies to the common concept.

mapping('ClientContract','CustomerOrder').
mapping('BusinessOrder','CustomerOrder').

From the mappings above, we can have a translation be-
tween two local terminologies by using rule on Listing 1b.
The query and result can be seen on Listing 1c.

Listing 1b. Simple translation rules.

translate(Term1,Term2) :-
 mapping(Term1,CommonConcept),
 mapping(Term2,CommonConcept),
 not(Term1 = Term2).

Listing 1c. Translation result.

translate(X,Y).
X = 'ClientContract'
Y = 'BusinessOrder'

The translation is just one example for translations in gen-
eral. OAs for this use case would just consider the parts of the
ontologies for the stakeholders involved (see Figure 2): stake-
holder concepts, their local terminologies and mappings,
which can more easily be added to and removed from an on-
tology as stakeholders change in a particular context. The
evaluation for this use case will be explained on section 6.

UC-2. Provision of design context for run-time data in-
terpretation. The current models of the production automa-
tion systems primarily are used at design time and do no sup-
port run-time activities (e.g. GUI and reports) with a semantic
description of exchanged data. The information at run time is
usually local to a system part such as a machine and consists
of efficient codes that are not easily understandable for non-
experts and not connected to the information in other system
parts or processes, which hinders the automatic analysis of
local messages coming from several machines. For example
the operator receives information on machine warnings and
failures but can not automatically connect these messages with
design-time information on the machine and the other ma-
chines and processes the machine is part of. Thus, the design
time information can enrich the information at run-time to
compare the outcomes of decision alternatives, e.g., which
machine warning to address first.

By using an ontology, we can make connections between
run-time information and design-time models automatically.
OAs reduce the complexity of the ontology by taking a subset
of the ontology, which is related to the stakeholder task. For
example, the workshop stakeholder gets several machine fail-
ure messages from run-time and he wants to know whether
there is any relationship between those failure messages. With
design knowledge, the system can filter out redundant ma-
chine failure messages that would distract the workshop

stakeholder. From the design knowledge, the workshop person
knows how the machines are connected so it is possible to
detect the original source of several machine failure messages.

The illustration is as follows. From the run-time informa-
tion, the workshop person gets at least three machine failure
messages as follows.

Listing 2a. Run-time machine failure messages.

MachineFailure(Failure/warning code, machine instance).
MachineFailure(‘FAIL041’,‘MAC500’).
MachineFailure(‘FAIL053’,‘MAC610’).
MachineFailure(‘FAIL057’,‘MAC620’).

To know the meaning and the relationship between the ma-
chine failure messages, he should check with the design time
information, which contains such data like these.

Listing 2b. Machine instances.

Machine(machine instance, list of pallets in buffer).
Machine(‘MAC500’,[P110, P130]).
Machine(‘MAC610’,[P120]).
Machine(‘MAC620’,[P140]).

ConnectedTo(machine instance, machine instance).
ConnectedTo(‘MAC500’,’MAC610’).
ConnectedTo(‘MAC500’,’MAC620’).

By using the rules below, he can find the original source of
the machine failures. One machine is predecessor for another
machine if it is connected to the other machine or a predeces-
sor of the other machine, recurrently. In our example, we can
identify the machine “MAC500’ as the original source of the
machine failure.

Listing 2c. Rules to find original source failures.

predecessor(X,Y) :- ConnectedTo(X,Y).
predecessor(X,Y) :- ConnectedTo(X,Z),
 predecessor(Z,Y).

This is a simplified version of many real-world use cases
that illustrates how the analysis of design time can support
run-time decision making. In general, the OAs can help filter-
ing certain run-time information that needed by the user and
then connect to the related design time information. OAs in
this case would provide the parts of the ontologies that are
relevant for the machines and their relationships that the op-
erator needs for his tasks. In Figure 1 the annotation of the
data elements (bottom box for each data element) shows
which stakeholder will need this data elements, which allows
selecting the relevant data elements for the OAs of each stake-
holder. The evaluation will be explained on section 6.

UC-3. Run-time measurement data representation and
analysis for design model improvements. Run-time meas-
urement information can be used to make design time infor-
mation more accurate. Volatile information like run-time
measurement can produce large amounts of data which would
make a single ontology unnecessary large and slow down the
performance of the ontology. The need for storing a high vol-
ume of run-time measurement data in the ontology occurs if
the concrete future statistical analysis procedures are not
known at the time of measurement.

Partitioning of the ontology in areas of similar volatility al-
lows building partial ontologies for the task or query at hand.
Run-time measurement at the frequency of 1 data point per
second provides 30,000 data points of shift of 8 hours. If this
is too much information for the ontology to hold, it is possible
to define OAs for smaller time windows, which allow includ-
ing the data for a certain time frame to be loaded into the on-
tology for data analysis as needed without exceeding the ca-
pacity of the ontology.

Semantic gaps between run-time measurement and design-
time information occur when we have data elements from the
interface of the machine at run time, but there is no machine-
understandable documentation for the design of the interface.
To solve this problem, we first give meaning to run-time data
that are needed to be stored in the ontology and then provide a
link from run-time to design-time semantics.

For example, to find out the maximum process time of cer-
tain machine functions, we can measure the process duration
of that machine function in one shift, so we collect sufficient
and still manageable data. The measurement result is an event
named “process” that consists of the id, the batch number,
status and timestamp of machine function. Listing 3a shows
several measurement results that can be obtained by filtering
run time data. The real data themselves is a very long list.

Listing 3a. Run-time event data with semantic annotation.

% process(machine function id, batch number, status, timestamp)
process(‘MF1’,’B-100’,’start’,2009-02-03 T 10:01:06.01)
process(‘MF1’,’B-100’,’stop’,2009-02-03 T 10:01:06.11)
process(‘MF2’,’A-200’,’start’,2009-02-03 T 10:01:06.12)
process(‘MF1’,’B-101’,’start’,2009-02-03 T 10:01:06.13)
process(‘MF1’,’B-101’,’stop’,2009-02-03 T 10:01:06.21)
process(‘MF2’,’A-200’,’stop’,2009-02-03 T 10:01:06.24)

 To calculate the maximum process time of certain machine
function, first we should calculate each process time by using
predicate “process_time” to find the difference between the
timestamp of “stop” status and the related timestamp of “start”
status from the same machine function and batch number, and
the keep it in the list using “list_of_process_time” predicate.
Then with using the predicate “maxprocess” we will find the
maximum value of process time of certain machine function
(MFun) from the list of process time.

Listing 3b. Example analysis rule on run-time data.

max(X,Y,X) :- X >= Y.
max(X,Y,Y) :- X < Y.
maxlist([X],X).
maxlist([X,Y|Tail],Max) :-
maxlist([Y|Tail],MaxTail),max(X,MaxTail,Max).
process_time(MF,SN,T) :-
 process(MF,SN,start,X),
 process(MF,SN,stop,Y),
 T is Y - X.
list_of_process_time(List,MFun) :-
findall(T,(process_time(MF,SN,T),MF =
MFun),List).
maxprocess(MFun,T) :-
 list_of_process_time(List,MFun),
 maxlist(List,T).

For query, for example we want to know the maximum
process time of ‘MF1’. The result can be seen on Listing 3c.

Listing 3c. Result of data analysis.

maxprocess('MF1',T).
T = 0.1

The machine function entity in design time consists of the
id and process time attributes. Usually the values of process
time attributes come from estimation, but by using run-time
measurement on process time, we can compare the previous
design-time estimates to actual run-time data analysis for re-
search on design improvements.

The illustrating example above is simple enough to conduct
statistical analysis at run time, but for more complex statistical
analyses, a solution for storing large amounts of data in an
ontology may be necessary, which would inflate ontology size
and decrease the ontology reasoning performance. OAs allow
to manage stacks of run-time data elements and keep the size
of ontology within well-performing capacity ranges.

VI. EVALUATION AND DISCUSSION
We have implemented the OAs from the SAW ontology us-

ing Protégé 3.3.1. The SAW ontology consists of 24 classes
and 3,000 instances from the simulation of production auto-
mation system. The evaluation will compare the measurement
of the whole ontology and the ontology areas for three differ-
ent use cases explained in section 5, as follows.

UC-1: Translation between local stakeholder terminol-
ogies. We compare the complexity (size) of the minimal on-
tology with OAs to the complexity of the overall ontology in
the study context. For the minimal ontology with OAs, the
business and workshop stakeholders have local terminologies
of 300 and 400 words, respectively. Both need 100 words to
communicate with each other. There are 200 to 700 data ele-
ments representing common knowledge, and 200 words for
mapping from both local terminologies to the common con-
cepts. Totally 1,100 to 1,600 entities are needed for the OAs.

 Meanwhile, the comprehensive ontology for 6 stake-
holders consists of around 1,800 words for local terminologies
and around 300 words to communicate with each other. There
are 1,600 words of common knowledge, and 600 to 1,800
words for mapping of all local terminologies to common con-
cepts. In total, the comprehensive ontology consists of 4,200
to 5,400 words. In this case, OAs can reduce the ontology size
to 20 to 30 % of the comprehensive ontology.

We can compare the efficiency of the minimal ontology
with OAs to the efficiency of the whole ontology in conduct-
ing the translation task as follows. To produce 100 words of
translation results from 200 words of mapping, the OAs needs
3 operators of query applying to those mapping.

The comprehensive ontology can produce more transla-
tions (300 words) with 3 operators of query as well. But the
query should be applied to more mapping (600 to 1,800
words). With OAs we can reduce the size of mapping and
make the operation faster.

UC-2: Design time context for run-time decision making.
For evaluation we determine the minimal (cognitive) com-

plexity of OAs to support a specific task more efficiently,
such as filtering failure warnings from machines that are con-
nected by design model relationships in a non-obvious way.
After that, we will compare the result with OAs to the (cogni-
tive) complexity of using a comprehensive complexity.

The cognitive complexity in this case is the number of data
elements an operator needs to check in order to address his
task. By implementing the OA to the comprehensive ontology,
the operator can get only 3 classes to check, from 16 classes
of the whole ontology. The size of ontology is also reduced,
from 533 KB to 90 KB by applying the OA. So the operator
will have smaller number of data elements to be connected in
this case, by applying the OA.

UC-3: Run-time measurement and analysis for design
improvement. For evaluation we will determine the minimal
complexity of OAs to support a specific data analysis task
more efficiently, such as calculating process characteristics.
Then we will compare the result with OAs to the (cognitive)
complexity using a comprehensive complexity.

In the OAs of the specific task, for 1 volatile entity the run-
time measurement consists of 30,000 data points per shift. In
the overall ontology, there may be many more, e.g., 300,000,
data points in one shift. By using the OAs, the user can focus
only on entity that he needs, and thus reduce the complexity of
data handling considerably.

The efficiency of the minimal ontology with OAs is com-
pared to the efficiency of the overall ontology in the case to
conduct the data analysis task as follows. In the OA, to obtain
5 data points analysis, it needed to run 3 operators of query
over 30,000 data points at one shift. Hence 18,000 operations
on data points are needed to obtain one of the measurements.

In the whole ontology, to obtain 20 data points analysis, it
needed to run 3 operators of query over 300,000 data points at
one shift. Hence 45,000 operations on data points are needed
to obtain one of the measurements. OA is notably more effi-
cient than overall ontology.

Lesson learned. From the experiences with these use cases,
we can learn the following lessons.

Building a smaller ontology for a task. As OAs allow fo-
cusing on the content of interest for a stakeholder task, we
could show that the resulting ontology is considerable smaller.
A smaller ontology is often also more efficient to handle and
allows tackling tasks that use a particularly large number of
data elements (e.g., run-time measurements in UC-3).

Focus stakeholders on relevant data elements. The combi-
nation of OAs, design-time, and run-time data elements al-
lowed filtering relevant data elements for stakeholders, which
would not be possible without the combination. Thus the OA
approach helped lower the cognitive complexity for stake-
holders by providing just the relevant subset of the compre-
hensive ontology.

Version management for ontology areas. With the OA con-
cept we can flexibly build task-oriented ontologies based on
different criteria (like volatileness, layers, roles). It is even
possible to compare different versions of the same OA (e.g.,
production automation system designed with different pa-
rameter settings) to compare the run-time reactions to from

changing design parameters. However, this ability also raises
the need for better version management for OAs to ensure the
building of consistent ontologies for specific tasks.

VII. CONCLUSION AND FURTHER WORK
Ontologies support the translation between stakeholder lo-

cal terminologies via common domain concepts, in our case
production automation concepts. Typically, the ontology
models become very large and complex compared to the basic
data model (such as used in a data base to automate run-time
processes) if they include several aspects on a domain and
some parts of the data model are volatile. In this paper, we
proposed a data modeling approach based on ontology build-
ing blocks, so-called “Ontology Areas” (OAs), which allow
solving tasks with smaller parts of the overall ontology. We
evaluated the proposed approach with use cases from the pro-
duction automation domain. Major result in the study context
is that OAs improved the efficiency of data collection task for
decision making by lowering the cognitive complexity for
designers and users of the ontology.

Further work. We see further research in the following di-
rections. Effort for OA design and use. While OAs make a
comprehensive ontology, which stores and uses engineering
knowledge both at design time and run time, more manage-
able, their application needs the effort of designers for struc-
turing the overall ontology and for building task-specific
smaller ontologies. Thus we will conduct empirical studies on
the effort needed to design and use ontologies with OAs.

Guidelines for the OA approach. While we found OAs use-
ful to manage a large and complex ontology, we see the need
for guidelines for the application the OA approach when de-
signing a new ontology as well as for structuring already es-
tablished ontologies with OAs to improve their performance.

Maintenance effort. Particularly for ontologies which
should be changed by many users concurrently, we see a po-
tential advantage of the concept of OAs, as areas with differ-
ent rates of change can be easily separated, simplifying the
checking of models for consistency etc. In the context of our
case study this could be measuring the effort for typical
changes, such as a new workshop layout, new machines, or
new connections between machines.

ACKNOWLEDGMENT
We want to thank our colleagues at ACIN and TU Prague,

for their feedback and inspiring discussions; and the SAW
team at TU Wien for providing the application environment
for the research use case.

REFERENCES
[1] American National Standard, "Enterprise-Control System

Integration," in Part 1: Models and Terminology. vol.
ANSI/ISA-95.00.01-2000 North Carolina, USA: ISA (the
Instrumentation, Systems, and Automation Society), 2000.

[2] K. Baclawski, M. K. Kokar, P. A. Kogut, L. Hart, J. Smith, J.
Letkowski, and P. Emery, "Extending the Unified Modeling
Language for Ontology Development," International Journal of
Software and Systems Modeling (SoSyM), vol. 1, 2002.

[3] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema, "Developing Applications Using Model-Driven
Design Environments," COMPUTER, pp. 33-40, 2006.

[4] S. Bergamaschi, S. Castano, and M. Vincini, "Semantic
integration of semistructured and structured data sources,"
SIGMOD Rec., vol. 28, pp. 54-59, 1999.

[5] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins,
"What are ontologies, and why do we need them?," Intelligent
Systems and Their Applications, IEEE [see also IEEE
Intelligent Systems], vol. 14, pp. 20-26, 1999.

[6] I. R. Cruz, X. Huiyong, and H. Feihong, "An ontology-based
framework for XML semantic integration," in International
Database Engineering and Applications Symposium (IDEAS
'04), 2004, pp. 217-226.

[7] A. Doan, N. F. Noy, and A. Y. Halevy, "Introduction to the
special issue on semantic integration," SIGMOD Rec., vol. 33,
pp. 11-13, 2004.

[8] D. Fensel, Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce: Springer, 2003.

[9] E. H. Gail, L. David, C. Jeromy, re, N. Fred, C. John, and N.
Martin, "Application servers: one size fits all ... not?," in
Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, Anaheim, CA, USA, 2003.

[10] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari,
"Sweetening WordNet with DOLCE," AI Magazine, 2003.

[11] C. H. Goh, "Representing and Reasoning about Semantic
Conflicts in Heterogeneous Information Systems." MIT, 1996.

[12] A. Halevy, "Why your data won't mix," Queue, vol. 3, 2005.
[13] M. Hepp, P. De Leenheer, A. De Moor, and Y. Sure, Ontology

Management: Semantic Web, Semantic Web Services, and
Business Applications: Springer-Verlag, 2007.

[14] M. Merdan, T. Moser, D. Wahyudin, and S. Biffl, "Performance
evaluation of workflow scheduling strategies considering
transportation times and conveyor failures," in International
Conference on Industrial Engineering and Engineering
Management (IEEM 2008), 2008, pp. 389-394.

[15] J. Miller and J. Mukerji, "Model Driven Architecture (MDA),"
Object Management Group, Draft Specification ormsc/2001-07-
01, July, vol. 9, 2001.

[16] T. Moser, A. Schatten, W. D. Sunindyo, and S. Biffl, "A Run-
Time Engineering Knowledge Base for Reconfigurable
Systems," Institute for Software Technology and Interactive
Systems, Vienna University of Technology, Austria, Vienna
2009 http://www.isis.tuwien.ac.at/files/u290/A_Run-
Time_EKB_-_techrep_VUT_2009.pdf.

[17] I. Niles and A. Pease, "Towards a standard upper ontology," in
2nd International Conference on Formal Ontology in
Information Systems, 2001, pp. 2-9.

[18] N. F. Noy, "Semantic integration: a survey of ontology-based
approaches," SIGMOD Rec., vol. 33, pp. 65-70, 2004.

[19] N. F. Noy, A. H. Doan, and A. Y. Halevy, "Semantic
Integration," AI Magazine, vol. 26, pp. 7-10, 2005.

[20] A. W. Scheer, Computer-Integrated Manufacturing, 4th ed.:
Springer, 1989.

[21] J. Seidenberg and A. Rector, "Web Ontology Segmentation:
Analysis, Classification and Use," in International World Wide
Web Conference (WWW 2006) Edinburgh, Scotland: ACM,
2006, p. 10.

[22] M. Uschold and M. Gruninger, "Ontologies and semantics for
seamless connectivity," SIGMOD Rec., vol. 33, pp. 58-64,
2004.

