

EuroSPI 2009 − 1

Abstract

Software provides an increasing part of the added value of modern automation systems and
thus becomes more complex. System requirements may change even late in the development
process, lead to ad-hoc modifications of the product and require systematic (and automated)
testing approaches. However, unit tests for automation software have to consider the interac-
tion with hardware components, are often not systematically automated, and thus make de-
fects during integration testing harder to find. Costly software integration makes the introduc-
tion of more flexible software processes that support the late change of requirements more
risky. In this paper we introduce the concept of “Test-Driven Automation” (TDA), which adopts
the successful idea of test-first development from business software development to the
automation systems domain: develop test cases before the implementation and systematically
automate unit tests to ensure sufficient testing on unit level to lower the cost and risk of sys-
tems integration. As foundation for TDA we present the characteristics of the design of a TDA
software component, i.e., interfaces to (a) automation functions, (b) diagnosis functions to al-
low test observation, and (c) test functions for setting the component to defined states, e.g., to
test behavior in error situations. We demonstrate in an industrial sorting application prototype
how the TDA approach can make testing more efficient and provide diagnosis information for
process analysis and improvement.

Keywords

Test-driven automation, automation systems, process support, testing, diagnosis.

Test-Driven Automation:

Adopting Test-First Development to

Improve Automation Systems

Engineering Processes

Dietmar Winkler Stefan Biffl Thomas Östreicher

Vienna University of Technology,

Favoritenstrasse 9/188, 1040 Vienna, Austria
{dietmar.winkler, stefan.biffl, thomas.oestreicher}@qse.ifs.tuwien.ac.at

Session I: will be adapted later by the editor

 2 − EuroSPI 2009

1 Introduction

Software-intensive automation systems, like industrial manufacturing plants, need to become more
flexible and robust to respond to changing business processes and business requirements. Function-
ality is increasingly realized in software components, which leads to an increased complexity of soft-
ware components embedded within the hardware solution [17]. Engineers in the automation systems
domain often have a non-software-engineering background and only limited knowledge on developing
complex software-intensive systems. Late changing requirements and costly software and systems
integration makes the introduction of more flexible software processes more risky [5][7]. Thus, effec-
tive and efficient software development methods and processes are necessary to support systems
development and quality assurance across disciplines [8], i.e., software and automation systems.

Diagnosis and test are challenges in the automation systems domain to monitor and control current
systems behavior during operation and maintenance [16] and respond to the current system status
even before a failure occurs. In typical automation systems solutions we can observe software solu-
tions that focus on functional requirements [18] and contain limited and often unsystematic diagnosis
and test capabilities. Test and diagnosis aspects are scattered unsystematically in the code and hin-
ders efficient re-validation and diagnosis. This ad-hoc approach to testing and diagnosis makes en-
hancements, refactoring and maintenance tasks more risky and expensive to validate [16]. Neverthe-
less, frequent and automated tests e.g., unit tests, can support engineers in finding defects early [2][9].
In contrast to business software development, unit tests in the automation domain have to consider
interaction with the hardware [17]. These unit tests are often not systematically automated, and thus
hinder efficient defect detection. A systematic separation of software aspects into functional behavior,
testing and diagnosis aspects with well-defined communication and data exchange can increase
product quality and support integration testing and maintenance for software-intensive automation
systems. These characteristic aspects represent the foundation for “Test-Driven Automation” (TDA):
interfaces to automation functions, diagnosis functions to allow test observation, and test functions for
setting the component to defined states, e.g., to test systems behavior in error situations.

The concept of TDA adopts the successful idea of test-first development from business software de-
velopment [2][9], e.g., administrative systems with databases, to help automation systems developers
improve their development process. Test-first-development (TFD), an established method in business
software development [2], focuses on quality assurance as an integral part of the development proc-
ess and refers to the concept of early testing. This concept represents the foundation for automated
unit-testing to lower the cost and risk of systems integration for iterative systems development [11].
Nevertheless, software processes are necessary to guide the engineers during the project. Software
processes define sequences of steps along the product lifecycle and focus on specific needs of the
project application context, like application domain and project attributes (e.g., size, complexity, and
stability of requirements). In modern business software development a wide range of traditional (se-
quential) software processes, e.g., W-Model [1] and V-Modell, and flexible software processes, e.g.,
eXtreme Programming [2] and Scrum [3], support software engineers in developing high-quality prod-
ucts. The V-Modell XT1, published in 2005, enables flexibility due to a modular process unit structure
and provides a range of project execution strategies including agile approaches [6]. In the automation
systems development industry the choice of systematic processes, e.g., GAMP [13], seems in practice
limited to sequential processes, like waterfall models. To benefit from more flexible iterative ap-
proaches, automation systems engineers can learn from process approaches in business software
development to handle the increasing complexity of software components in systems development.

The remainder of this paper is structured as follows. Section 2 introduces the concepts of TFD, Sec-
tion 3 discusses requirements and challenges of the automation systems domain and identifies re-
search issues for TDA. In Section 4 we introduce the TDA concept in context of a common engineer-
ing process. To illustrate how the novel TDA approach can increase testing efficiency and can provide
diagnosis information for process analysis and improvement, we discuss an industrial sorting applica-
tion prototype in Section 5. Finally, Section 6 summarizes lessons learned from the TDA prototype
application and points out further research work.

1 V-Modell XT resources available at http://www.v-modell-xt.de.

Session I: will be adapted later by the editor

 EuroSPI 2003 − 3

2 Test-First Development in Business Software Development

Traditional (sequential) software development approaches, e.g., waterfall models, place test case
definition and test execution late in the development process after code construction. The identification
of defects (caused by incomplete, wrong or ambiguous requirements) in late development phases can
lead to (a) high effort to locate defects in the large application context, (b) high risk of defects that do
not occur often, and (c) high rework effort to fix the problems [5].

Test-first development (TFD) [2] is a strategy to address these issues by shortening the cycles be-
tween test case definition and test execution [9]. Test cases are defined prior (or at least in parallel) to
the implementation of a component. In general, the concept of TFD consists of 4 steps [2]: (1) Selec-
tion of a specific requirement and implementation of test cases to check the requirement for correct-
ness (Think); (2) Test case execution. As there is yet no implementation of functionality, this test case
must fail (Red Test Result). (3) Ongoing implementation of test-case related functionality and test-
case execution until the test case is successful (Green Test Result). (4) Optimization of the implemen-
tation design without changing functionality and execution of test cases (Refactor). After finishing step
4 selection of the next batch of requirements. This approach can lead to a comprehensive understand-
ing of the basic requirements and early defect recognition in case of unclear and incorrect require-
ments during test case generation. Additionally, TFD enables immediate feedback during component
implementation and test because of frequent test runs in short iterations and thus represents the foun-
dation for a continuous integration strategy [11].

Figure 1: Concept of Test-First Development with several Test Runs.

Figure 1 illustrates the application of TFD in a typical project context in business software develop-
ment. Test cases on business level (e.g., system and acceptance testing) can be derived from re-
quirements (e.g., Requirement A maps to test cases A1 and A2). Frequent test runs during implemen-
tation provide immediate feedback on the current implementation task. Thus, implemented require-
ments and test case execution results lead to (a) successful test cases (marked green, requirement
was already implemented correctly) and (b) unsuccessful test cases (marked red, implementation not
finished or corrupted). TFD and continuous integration also helps identifying possible negative side-
effects on other system parts (i.e., regression testing) which are not in the focus of the current imple-
mentation task (status switched from green to red without working actively on the affected code). For
instance, the implementation of functions tested with test case C2 has a negative impact on the test
case B2 result.

Frequent test runs in short iterations enable the observation of real project progress and deliver im-
mediate feedback on the overall project status. Thus, automated testing is a pre-condition for continu-
ous integration [11] including early and effective testing approaches.

Session I: will be adapted later by the editor

 4 − EuroSPI 2009

3 Challenges and Research Issues in Automation Systems

In the automation systems domain we can observe a wide range of application types, e.g., production
automation systems with focus on logistics and routing [19], embedded systems with limited re-
sources, and real-time systems with time critical requirements [15]. In this paper we focus on applica-
tions of industry automation systems, e.g., assembly workshops to combine smaller parts into more
complex products, to identify challenges for developing and testing software for automation systems
[4]. Figure 2 illustrates the typical structure of an industrial automation system [12] on three layers: (a)
business processes with dispatchers who turn customer contracts into work orders, (b) workshop op-
erators for configuration and coordination of transport system and machines, and (c) layer of individual
machines in the workshop with control systems from systems engineers and machine vendors. Plans
and status reports link the layers: the current machine status can be used to reconfigure the current
workshop (on workshop layer) and propagate status information to the business layer to reschedule
work orders, if incidents on lower levels limit the effective workshop capacity [12].

Distributed System

Machine order
Machine
Status

Success
Measurement

Status
Capacity
Failures

Guidelines
Strategy

Requests/Tasks

Workshop
System

coordination

Business process
Work order scheduling

Systems engineer

Machine vendor

Workshop
configurator

Work order
dispatcher

Workshop
operator

Business
Process

Work Order
Scheduling

Linear
Axis

ch
ip

Wrist
Unit

Grip
pe

r

ch
i p

chip

Machine
In workshop

Figure 2: Levels of Automation Systems according to [12].

A typical systems engineering component in automation industry has to address (a) functional aspects
to fulfill the required functional requirements [18], (b) diagnosis aspects to monitor and control systems
behavior [16] and to predict upcoming maintenance needs, and (c) testing aspects to check systems
behavior during systems development including tests cases on error conditions [16], e.g., regression
testing after changes, and system tests during operation after completed maintenance tasks [17]. In
traditional automation systems engineering the diagnosis and sometimes testing aspects are merged
into the functional automation solution which hinders adapting efficient diagnosis and verification to
changes during operation and maintenance.

Based on the Artemis2 roadmap for automation systems research and discussions with industry part-
ners in the Medeia3 and logi.DIAG4 research projects we derived the following needs and research
issues:

2 https://www.artemisia-association.org
3 Medeia: Model-Driven Embedded Systems Design Environment for the Industrial automation Sec-

tor, http://www.medeia.eu/.
4 logi.DIAG: Test-Driven Automation in Systems Environments, http://www.logidiag.at.

Session I: will be adapted later by the editor

 EuroSPI 2003 − 5

• Separation of design aspects for automation functionality, testing, and diagnosis aspects. Automa-
tion systems components typically include automation functionality, test-case functionality, and di-
agnosis functionality without a clear separation of these aspects, which makes the components
unnecessarily hard to modify and validate [16][17]. Thus, we see the separation of these aspects
as pre-condition for efficient systems development, operation, and maintenance to enable the se-
lective evaluation of required attributes, e.g., test-coverage analysis during development. Test
cases need to set the system in a certain state, e.g., stimulate an error state, and test the re-
sponse of the system by using collected data from diagnosis. Thus, data derived from diagnosis
functions can be used (a) for immediate feedback on the systems state (during development, op-
eration, and maintenance), (b) for prediction of required maintenance tasks during operation, and
(c) data can be used independently and combined as needed to get information on business level.
Thus, the first research issue is (a) how a TDA component can be designed and (b) how the indi-
vidual aspects (automation, diagnosis, and test) can interact with each other efficiently.

• Efficient validation based on the test-first approach. Efficient validation and re-validation after
changes are key issues to reduce avoidable system downtime. Our observation in the automation
systems domain showed a focus on functional requirements with limited and often unsystematic
testing capabilities [18]. In the hierarchical design of automation systems we assume that TFD can
be applied to components on all levels and in all process steps, e.g., on requirements level, archi-
tecture level, and component and module level. Process models, e.g. the V-Modell XT and the W-
Model [1], can provide a framework for introducing systematic TDA. The second research issue is
(a) how the test-first approach can be realized in the production automation domain and (b) how
the TDA concept can enable early testing on various levels during systems development.

4 The Concept of Test-Driven Automation (TDA)

This section presents the concept of the TDA component structure and the interaction with its envi-
ronment and introduces the concept of test-first development based on a suggested process approach
for the automation systems domain.

4.1 Component Aspects in Test-Driven Automation

Bundling functional, diagnosis, and testing aspects in test-driven automation (TDA) components pro-
vide a strict separation of individual automation aspects. Interfaces enable an efficient communication
in a hierarchical systems design. In common hierarchical automation systems, functional components
and test cases are spread and mixed over the design of the systems. Diagnosis functions are typically
add-ons without systematic integration within the systems design [16]. A strict separation of these
components including defined interaction mechanisms are pre-conditions for efficient systems devel-
opment, operation, and maintenance. Therefore, a test-driven automation component (TDA compo-
nent) consists of these three aspects, (a) automation aspect, (b) diagnosis aspect, and (c) testing as-
pect. Figure 3 illustrates these aspects and Figure 5 provides the example of the prototype study.

The automation aspect implements the functional and logical behavior of the component and interacts
via interfaces with other system components within a hierarchical systems design. The diagnosis as-
pect is separated from functionality but interacts with the automation aspect to get access to hardware
signals. Instructions from automation functions are passed to sub-components via the diagnosis inter-
face; measurements and results are received from sub-components and are (a) interpreted (diagnosis
functionality) and (b) passed to the automation interface to respond to system overall results and sig-
nals. Additionally, diagnosis includes an interface to report measurement results to higher TDA com-
ponents (e.g., for aggregation and reporting purposes). Testing aspects provide test functions for the
TDA component, e.g., mocked results for the setup of test scenarios [14]. An important task of the test
aspect is to set up error conditions (e.g., malfunctions of machines) for the unit test of diagnosis and
logical functions without disturbing machine hardware components. Thus, these test functions can be
applied for unit testing during development and during operation in case of sub-component exchange.

Session I: will be adapted later by the editor

 6 − EuroSPI 2009

4.2 Test-First Development Approach with TDA Components

Based on the definition of the TDA component, including the three automation aspects, i.e., automa-
tion, diagnosis, and testing aspects, test-first development (TFD) can be applied in context of a soft-
ware engineering process model. Our observations in automation systems industry reveals that typical
engineering processes are similar to the waterfall approach. Thus, the V-Modell XT seems to be a
promising basic model for systems automation development because of its flexibility and adaptability
on various application domains [6]. Figure 3 presents the technical part of our suggested iterative
model based on the V-Modell XT with respect to automation systems characteristics. Test-first devel-
opment (TFD) is applicable on three levels (requirements, architecture & integration, and component)
and enables early test case generation on every level.

Figure 3: Concept of a TDA process based on the V-Model XT.

TFD includes the test case definition in the specification phases, i.e., requirements definition, func-
tional & technical systems design, and component specification, of the process model and the execu-
tion of the test cases during and after implementation. Table 1 gives an overview on test levels of indi-
vidual phases, deliverables generated during the entire phase, and relevant stakeholders.

Table 1: Test Levels and Deliverables for TDA according to the V-Model XT.

Phase Deliverables Test Level Stakeholders

Requirements Definition Use Cases
System / Acceptance
Testing

Customer,
Factory Setting

Functional and Technical
Systems Design

Component diagrams,
State-Charts

Architecture / Inte-
gration Testing

Engineering Team

Component Specification State-Charts Component Testing Individual Engineer

Implementation of TDA
Components

Function Blocks Developer Testing Individual Engineer

Test cases on requirements level address customer requirements and factory settings according to
business goals and risks from business perspective. Note that test case definition on this layer pro-
vides a test framework for later development phases. Thus, underlying functionality must be mocked
and simulated to enable successful test case execution [14]. This functionality can be provided by the

Session I: will be adapted later by the editor

 EuroSPI 2003 − 7

testing aspect (i.e., setting the system in a certain state) and the diagnosis aspect (measuring results
of the system) of the TDA component. On architecture and integration level test cases (and mocked
individual components) address the engineering team and focus on components, interfaces and the
interaction between components. Component diagrams and state charts are common models to de-
scribe components and interaction of these components. Component testing [9], based on a detailed
state charts, addresses individual engineers and focuses on detailed functionality of the automation
system. Function blocks and structured text are used for implementation purposes on the lowest and
most detailed level of the process approach. This part must be considered during constructing individ-
ual components. In the context of this paper this phase is out of scope. Zhang et al. provide an ap-
proach for the specification and verification of applications based on function blocks. [20].

5 Prototype Study: Sorting Application

In this section we demonstrate the TDA approach with components in an industrial sorting application
prototype, i.e., a typical machine in an assembly workshop as described in Section 3. The goal is to
show how the TDA approach can make testing more efficient and provide diagnosis information for
process analysis and improvement.

5.1 Sorting Application Description

The sorting application represents a typical setting in an assembly workshop within a production au-
tomation system. The main task of the sorting application is to recognize the type of an incoming
clamp according to defined sorting criteria (e.g., derived from business goals) and sort it into the ap-
propriate output box. The sorting application should manage to sort 6 clamps per minute. Figure 4a
provides a schematic overview of the system.

Figure 4: Sorting Application: (a) Workshop Layout and
(b) Component Model based on Sünder et al. [18].

Figure 4b shows the component model of sorting application, a strictly hierarchical system as typical in
industry automation system applications. To illustrate the TDA component and the interaction with its
environment and to show the process of constructing models with respect to Model-Driven Testing [1]
and generating test cases based on the test-first approach, we focus on a subset of components, i.e.,
the Handling Unit. The main task of the Handling Unit is to control two axes, i.e., the horizontal and
vertical axis and the vacuum gripper to pick up the part for sorting purposes.

5.2 TDA Component of the Handling Unit

The TDA component encapsulates functional behavior, testing, and diagnosis functionality including
interaction within the TDA component and providing/requesting interaction activities to other parts of

Session I: will be adapted later by the editor

 8 − EuroSPI 2009

the system using defined interfaces for automation, diagnosis, and testing. The component model of
the Sorting Application (see Figure 4b) illustrates the interrelationship of the Handling Unit with other
parts of the system: (a) Loading Station and (b) Positioning Unit and Vacuum Gripper. The Loading
Station monitors and controls the Handling Unit via the functional interface, requests diagnosis data
and initiate test cases (e.g., stimulates a defined state or a possible unreachable system state) via
appropriate interfaces for diagnosis and testing. Note that the Loading Station represents another
(higher-level) TDA component in the hierarchical systems structure. The Positioning Unit and the Vac-
uum Gripper (also – lower-level – TDA components) are controlled by the Handling Unit via functional
interfaces (e.g., move to a certain position or grab a work product) and receives information whether
the planned position is reached or the work product has been picked up via the appropriate diagnosis
interfaces. Testing interfaces enable the Handling Unit to set the Positioning Unit and the Vacuum
gripper in defined states, e.g., an error state.

Figure 5: TDA Component Interface Model for a Handling Unit.

Figure 5 illustrates a simple component interface model of the Handling Unit. The component is trig-
gered via the automation (functional) interface by the Loading Station sort() and returns the current
state via the diagnosis interface partsSorted() after task completion. Error states are passed to the
Vacuum gripper setGripperError() and clearGripperError() via testing interfaces to stimu-
late an error to test appropriate systems behavior of a supposed error of the gripper during develop-
ment or maintenance. The strict hierarchical systems design of production automation systems en-
ables TDA components to provide functional, diagnosis, and testing aspects to higher levels in the
hierarchy. Thus, the TDA concept is, in principle, applicable on all levels of an automation system.

5.3 Test-First Development with Test-Driven Automation

The strict separation of functional, diagnosis, and testing functions in a hierarchical automation sys-
tems design based on TDA components is the foundation for successfully applying the test-first ap-
proach of the TDA concept. Following the suggested process steps (see Figure 3), test-first is applica-
ble on three levels: (a) requirements definition, (b) functional & technical systems design, and
(c) component specification.

Table 2: Test Cases derived from Requirements and Use-Cases.

No. Desc. Level Type* Pre-condition Input Expected Result Post-condition

1 Sorting a
Part

System NC Handling Unit in
idle Position

Command to
sort part

Handling Unit in idle Position
and part sorted

Handling Unit in
idle position

2 Through-
put

System NC Handling Unit in
idle Position

Command to
sort part

Part has been sorted in less
or equal than 10sec.

Handling Unit in
idle position

Requirements definition. Requirements are success-critical issues in automation systems engineering
as customer changes and modifications typically have a major impact on system integration and can
cause a high amount of rework effort and cost [5][7]. UML use cases are appropriate approaches in
business software development [1] to model requirements from user perspective and are applicable to
the automation systems domain. The Handling Unit consists of a few use cases: (a) sort part (initiated
by the Loading Station), (b) Pick up part and Release part (controlled by the Handling Unit), and (c)
Gripper Positioning to get the arm moved to a certain position. Based on the basic requirements and
the test-first approach of the TDA concept test cases can be derived directly from the use cases.

Session I: will be adapted later by the editor

 EuroSPI 2003 − 9

Table 2 presents selected regular/normal test cases (NC) on systems level. Note that test-cases
should include normal test cases (NC), special test cases (SC) representing systems behavior in the
border area of regular systems behavior, and error cases (EC) for error states of the system.

Functional and technical systems design and component specification. Based on use cases and the
architecture of the hierarchical automation system (see Figure 4b) test cases can be derived on inte-
gration test level to test the interfaces and the interaction of the related TDA components prior to the
detailed specification and the implementation (i.e., test-first approach). To enable automated testing
based on test-first development, state charts can enable modeling the desired behavior of the system.
In automation domain state charts are well-established and enable automated verification and valida-
tion [10]. Figure 7 illustrates the state chart of the Handling Unit including error states, which can be
initiated via the testing interface and monitored via the diagnosis interface of the TDA component.

Figure 6: State Chart of the Handling Unit.

Table 3 illustrates selected test cases derived from the state chart, i.e., a regular test case and an
error case, to demonstrate test case definition in TDA. Note that the gripper is in idle state (pre-
condition) and should move to an entire position: Test case 1 describes a regular test case and test
case 2 addresses an error situation, e.g., if one axis got stuck.

Table 3: Test Cases of the Handling Unit based on State Charts.

No. Desc. Level Type* Pre-condition Input Expected Result Post-condition

1 Gripper
move to Pos

Comp. NC Handling Unit
idle

Sort part Gripper moved to intended
position

Gripper is in
intended pos.

2 Axis got
stuck

Comp EC Handling Unit in
idle Position

Sort part;
error after 3s

Positioning Unit reports an
error; Handling Unit idle

Handling Unit in
idle position

Testing automation systems also includes testing error states within a continuous integration strategy.
In industry practice the definition of hardware error states (e.g., stuck of an axis) is an increasing chal-
lenge because (a) error states often must be initiated manually and are not feasible because of the
availability of error states of machines and (b) required software components are not available during
test time. Thus, these error states have to be simulated using mocking approaches to enable efficient
testing and re-validation [14].

5.4 Mocking with State Charts

The application of TFD on various levels can require the simulation of the underlying functionality, if
this functionality is not yet fully implemented. Thus, mocking of components is required to successfully
apply TFD. A mocking component is a simple simulation of a subcomponent or external system which
is required by a component to perform its behavior [14]. It should be as simple as possible, implement-
ing only the behavior that is needed by the component under test. This facilitates test automation by
enabling the testing of a component while its subcomponents are not yet fully implemented. Mocking
also enables testing without deploying to the target hardware and the possibility of generating error
states although an actual error is not present. Figure 7 shows a sample mockup in state chart notation
of the Gripper Unit to simulate its basic behavior including error generation. Similar to test case gen-
eration mocking components are efficient modeling approaches for verification and validation pur-
poses [14].

Session I: will be adapted later by the editor

 10 − EuroSPI 2009

Figure 7: Mocking with Error Generation of the Gripper Unit.

The strict separation of individual software aspects and the interaction of individual TDA components
enable a transparent systems design including testing and diagnosis capabilities. Based on the TDA
concept TFD enables more efficient and systematic tests in comparison to the traditional automation
systems approaches.

6 Summary and Further Work

The increasing need for flexibility of automation systems and the trend to shift functionality from hard-
ware to software solutions leads to new challenges in the software development and to increased
complexity of software. Up to now, code & fix approaches have been common practices in industry
automation systems development. The increasing complexity requires more systematic software de-
velopment approaches (methods and processes) for construction, refactoring, and verification and
validation. In this paper we introduced the concept of “Test-Driven Automation” (TDA), which adopts
the successful idea of test-first development from business software development to the automation
systems domain and presented a novel TDA component including a strict separation of functional,
testing, and diagnosis aspects to support more efficient testing on various levels of development.

Applying the presented concepts on a pilot sorting application we derived a set of lessons learned:
Packaging automation, testing and diagnosis aspects in Test-Driven Automation (TDA) components
provide strictly separated functions including well-defined communication over interfaces. Test func-
tionality can put automation components into states for testing purposes that the automation logic
would not reach with regular input, e.g., testing correct reaction on failure states. Diagnosis functional-
ity enables measurement on the current system status and provides information for independently
analysis of test and machine status and can support engineers during development, operation and
maintenance, e.g., monitoring of systems behavior during operation and external data analysis for
improvement purposes. Test-first development based on models can help to foster early test-case
generation and increase the understanding of systems behavior and lead to higher product quality.
TFD enables automated and frequent test case execution, support continuous integration and pro-
vides a framework for fast and efficient re-validation after changes in hardware and software compo-
nents. Developing TDA components with the test-first approach lead to an iterative development proc-
ess and provide well-defined and flexible framework for project execution.

Future work is (a) to refine the process approach with emphasis on automation systems development
based on the V-Modell XT including domain-specific process tailoring and (b) to investigate the scal-
ability of the TDA concept by addressing a larger pilot application with industry partners, with particular
emphasis on data collection to compare the effectiveness of traditional testing in automation systems
engineering and testing following the TDA concept.

Acknowledgements

We want to thank our partners from academia and industry in the Medeia and logi.DIAG projects for
their valuable discussions and feedback. Parts of this work were funded by the Austrian Research
Funding Agency (FFG) grant logi.DIAG (Bridge7-196929).

Session I: will be adapted later by the editor

 EuroSPI 2003 − 11

Literature

[1] Baker P., Dai Z.R., Grabowski J.: Model-Driven Testing: Using the UML Testing Profile, Springer, 2007.

[2] Beck K., Andres C.: Extreme Programming Explained - Embrace Change, Addison-Wesley, 2004.

[3] Beedle M., Schwaber K.: Agile Software Development with Scrum, Prentice Hall, 2008.

[4] Biffl S., Schatten A., Zoitl A.: Integration of Heterogeneous Engineering Environments for the Automation
Systems Lifecycle, accepted for publication in Proc. IEEE Industrial Informatics Conf., 2009.

[5] Biffl S., Aurum A., Boehm B., Erdogmus H., Grünbacher P. (eds.): Value-Based Software Engineering,
Springer Verlag, 2005.

[6] Biffl S., Winkler D., Höhn R., Wetzel H.: Software Process Improvement in Europe: Potential of the new V-
Modell XT and Research Issues, in Journal Software Process: Improvement and Practice, Volume 11(3),
pp.229-238, Wiley, 2006.

[7] Boehm B.: Software Engineering Economics, Prentice Hall, 1981.

[8] Chan K.K., Spedding T.A.: An integrated multi-dimensional process improvement methodology for
manufacturing systems, Comput. Ind. Eng. 44(4): 673-693, 2003.

[9] Damm L.-O., Lundberg L.: Quality Impact of Introducting Component-Level Test Automation and Test-Driven
Development, Proc. EuroSPI, 2007.

[10] Drusinksy D.: Modeling and Verification using UML Statecharts, Newnes, 2006.

[11] Duvall M.P., Matyas S., Glover A.: Continuous Integration: Improving Software Quality and Reducing Risk,
Addison-Wesley, 2007.

[12] Lüder A., Peschke J., Reinelt D.: Possibilities and Limitations of the Application of Agent Systems in Control,
Proc. Conf. On Concurrent Enterprising (ICE), Italy, 2006.

[13] GAMP 4: Good Automation and Manufacturing Practice – Guide for Validation of Automated Systems, 2001.

[14] Karlesky M., Williams G.: Mocking the Embedded World: Test-Driven Development, Continuous Integration,
and Design Patterns, Proc. Emb. Systems Conf, CA, USA, 2007.

[15] Larsen K. G., Mikucionis M., Nielsen B., Skou A.: Testing real-time embedded software using UPPAAL-
TRON: An industrial Case Study. In Proc. 5th ACM Int. Conf. on Embedded Softw.,. ACM Press, 2005.

[16] Nandi S., Toliyat H.A.: Condition Monitoring and Fault Diagnosis of Electrical Machines, Conf on Industry
Applications, Phoenix, US, 1999.

[17] Schäfer W., Wehrheim, H.: The Challenges of Building Advanced Mechatronic Systems. In 2007 Future of
Software Engineering (May 23 - 25, 2007). International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, pp. 72-84, 2007.

[18] Sünder C., Zoitl A, Dutzler C.: Functional Structure-Based modelling of Automation Systems, Jounal of
Manufacturing Research, 1(4), pp405-420, 2007.

[19] Vyatkin V., Christensen J.H., Lastra J.L.M.: OOONEIDA: An Open, Object-Oriented Knowledge Economy for
Intelligent Industrial Automation, IEEE Trans. on Industrial Informatics, vol. 1, pp. 4-17, 2005.

[20] Zhang W., Diedrich C., Halang W.A.: Specification and Verification of Applications Based on Function Blocks,
Computer-Based Software Development for Embedded Systems (LNCS 3778), Springer Verlag Berlin
Heidelberg, pp. 8-34, 2005.

Session I: will be adapted later by the editor

 12 − EuroSPI 2009

Author CVs

Dietmar Winkler
Dietmar Winkler is researcher and lecturer at the Institute for Software Technology and Inter-
active Systems, Vienna University of Technology, Austria. He received an MS in Computer
Science from Vienna University of Technology. In 2007 he worked as a guest researcher at
Czech Technical University, Department of Cybernetics in Prague (CZ). In 2008 he received a
scholarship by Siemens Austria and the Faculty of Informatics of TU Vienna for a 4 months re-
search stay at the Fraunhofer Institute of Experimental Software Engineering in Kaiserslautern
(DE). His research interests include software engineering and software processes, quality
management and quality assurance, and empirical software engineering. Additionally, he is
software engineering and quality management consultant in the automotive business domain
and in public sector IT projects and project member of the research project “Test-Driven
Automation with logi.DIAG”.

Stefan Biffl
Stefan Biffl is an associate professor at the Institute for Software Technology and Interactive
Systems, Vienna University of Technology, Austria. He received MS degrees in Computer Sci-
ence and Business Informatics from Vienna University of Technology (VUT) and University of
Vienna, respectively, and a PhD degree from VUT. In recent years he worked as guest re-
searcher at the Fraunhofer Institute for experimental Software Engineering (Kaiserslautern,
Germany) and at Czech Technical University in Prague, Department of Cybernetics. His re-
search interests are in the areas: Value-Based Software Engineering; Empirical Software En-
gineering, risk and quality management, and software process improvement. He is a member
of the IFIP Technical Committee on Software Engineering (IFIP TC2) and principal researcher
of the research project “Test-Driven Automation with logi.DIAG”.

Thomas Östreicher
Thomas Östreicher is researcher and project member of the research project “Test-Driven
Automation with logi.DIAG”. His research interests are in the areas: modeling of software in-
tensive systems, programming languages, and software process management.

EuroSPI 2009 − 13

