
Automation Component Aspects for Efficient Unit Testing
Dietmar Winkler

Vienna University of Technology
Inst. of Software Technology

Favoritenstr. 9-11/E188
A-1040, Vienna, Austria

Dietmar.Winkler@tuwien.ac.at

Reinhard Hametner

Vienna University of Technology
Automation and Control Institute

Gußhausstr. 27-29/E376
A-1040 Vienna, Austria

Hametner@acin.tuwien.ac.at

Stefan Biffl

Vienna University of Technology
Inst. of Software Technology

Favoritenstr. 9-11/E188
A-1040, Vienna, Austria

Stefan.Biffl@tuwien.ac.at

Abstract

Automation systems software must provide sufficient
diagnosis information for testing to enable early defect
detection and quality measurement. However, in many
automation systems the aspects of automation, testing,
and diagnosis are intertwined in the code. This makes
the code harder to read, modify, and test. In this paper
we introduce the design of a test-driven automation
(TDA) component with separate aspects for automa-
tion, diagnosis, and testing to improve testability and
test efficiency. We illustrate with a prototype, how
automation component aspects allow flexible configu-
ration of a “system under test” for test automation.
Major result of the pilot application is that the TDA
concept was found usable and useful to improve testing
efficiency.

Key words: Test-Driven Automation, Test automation,
Automation Component, Automation Software Devel-
opment.

1. Introduction

An increasing part of added functionality in modern
automation systems is implemented in software. Thus,
software components become more complex. Systems
requirements may change even late in the development
process, lead to ad-hoc modifications of the product,
and require systematic testing approaches. In current
automation systems development products, software
code and testing code is often intertwined in the code,
which hinders efficient and systematic testing. Thus the
code is hard to read and to modify during development
and maintenance. Diagnosis functions are preconditions
to evaluate the current status for a system under devel-
opment and are the basis for defect prediction during
operation and maintenance of a system [15]. Similar to

test functionality, diagnosis aspects are typically scat-
tered unsystematically in the code, which hinders the
integration of individual diagnosis aspects into a com-
prehensive diagnosis strategy. Thus, diagnosis compo-
nents are treated as add-ons (e.g., by applying external
measurement) and separated from the logical system
behavior. Nevertheless, the early integration of testing
and diagnosis aspects during systems development can
increase product quality and project development effi-
ciency significantly [19].

Testing variants of an individual component (e.g., in
a component library) is an increasing challenge in sys-
tems automation design. Thus, frequent reconfiguration
of components is a key issue in modern systems devel-
opment [22]. Increasing software complexity, availabil-
ity of automation component variants, and late changing
systems requirements require flexible and efficient
mechanisms for design and testing (e.g., efficient recon-
figuration of components and frequent test runs). Auto-
mated and frequent testing – a common practice in busi-
ness IT software development [5] – enables early defect
detection and helps identifying side effects.

Following a systematic design approach in the auto-
mation systems domain, we identified three major as-
pects in the design of a testable automation systems
component [13]: (a) automation aspects represent the
logical behavior of the system, (b) diagnosis aspects
refer to measurement of the current systems behavior,
and (c) testing aspects enable the setup for automated
unit test cases. Testing aspects also support scenarios
which are typically hard to test, e.g., by setting the sys-
tem into a certain error state, which could appear during
operation in case of device errors.

In this paper we introduce a design that structures
aspects for automation components with a focus on
automation, diagnosis, and testing functions. The sepa-
ration of functional, diagnosis, and testing aspects en-
able flexible system reconfiguration and supports auto-

1

mated testing approaches to improve testability and test
efficiency. We illustrate the automation component
aspects in a prototype showcase that shows how the
automation component allows flexible configuration of
a system under test for test automation.

The remainder of this paper is structured as follows:
Section 2 presents the related work on unit test automa-
tion in software engineering as a basis for the applica-
tion in the automation systems domain and presents the
concept of the IEC 61499 standard with respect to the
test-driven automation component (TDA component)
prototype. Section 3 describes the research issues. Sec-
tion 4 summarizes the concept for automated unit test-
ing, introduces the design for the TDA component, and
illustrates the interaction of the TDA component with
other TDA components and hardware interfaces. We
present a pilot application and discuss lessons learned
and findings in section 5. Finally, section 6 concludes
and identifies future work.

2. Related Work

This section summarizes related work on unit test
automation in software engineering and introduces to
the automation systems domain.

2.1 Automating Software Unit Tests
Testing in traditional IT Software development proc-

esses (e.g., sequential development approaches like the
V-Modell XT) focus on an early definition of test cases
(TCs) and a late execution of these TCs after designing
and implementing the software product [3][8]. This
test-first approach, e.g., early definition of TCs based
on requirements, enables an increased understanding of
the product and the application domain before imple-
mentation and early defect detection and correction if a
TC cannot be defined properly [4]. The increasing need
for flexibility fosters the application of agile develop-
ment process approaches, e.g., SCRUM, to respond to
frequent changing requirements [1]. Test-Driven devel-
opment (TDD) is a common agile practice for business
IT software development with focus on small and man-
ageable iterations. The TDD approach consists of 4
major steps [4]: (1) Think. Select a specific requirement
and implement the corresponding TC prior to the im-
plementation of the functional behavior; (2) Red Test
Result. Execute the TC. As there is no correct imple-
mentation the TC must fail; (3) Green Test Result. On-
going implementation of the test-case related function-
ality and TC execution until the TC passes; (4) Refac-
tor. Optimize the implementation design without chang-
ing functionality and execute TCs. After finishing step
4, select the next batch of requirements.

Figure 1: Test Execution Reports [19].

The application of this TDD approach leads to auto-
mated frequent testing and can be included in a con-
tinuous integration strategy [5]. Figure 1 presents a
sample snapshot of TDD application in a business IT
software development project. Requirements are broken
down to TCs and implementation tasks which are tested
in various and frequent test runs. Because of this con-
tinuous integration strategy the current project state
remains transparent along the product development life-
cycle. Even side effects, i.e., other TCs and/or require-
ments are affected by individual test runs negatively,
can be identified easily. For instance, test execution of
TC B2 (requirement B) has a negative impact on TC A2
(requirement A) in test run 8. Note that these short itera-
tions allow the identification and removal of defects
early.

Nevertheless, a continuous integration approach re-
quires an appropriate test framework which enables
frequent execution of a high number of TCs in a certain
system setting [5]. Note that the test framework also
includes mock objects to simulate not implemented sys-
tems behavior to enable automated testing of compo-
nents or systems [13].

Software Under
Test (SuT) Test Report (TR)

Test Suite

Test Case 1

Test Case 2

...

Test Case n

SuT (V1)

SuT (V2)

...

SuT (Vn)

Software
Configuration

Test Runner

TR 1

TR 2

...

TR n

Test Cases Test Runs
Test
Results

Test
Results

Figure 2: Test Framework for Automated Test-
ing.

Figure 2 presents a schematic overview of a test
framework, e.g., based on Unit Tests [6], for automated
TC execution: A number of individual TCs are collected
in a Test Suite. The Software under Test (SuT) is a con-
figuration of the software and systems product (e.g.,

2

component versions and/or variants). The Test Runner
applies the TCs to the SuT and provides fast feedback
on the test results, which are presented by Test Reports
(TR). Experiences from the development of business IT
software system show that even small applications re-
quire a considerable number of TCs for sufficient test
coverage. Test coverage refers to the degree of covering
all code fragments by TCs [18]. In practice, the high
effort to run these tests manually limits the testing in-
tensity in a project with limited resources. Test automa-
tion encourages high testing intensity for each new
software version. Nevertheless, the application of auto-
mated testing requires additional effort for the setup of
the testing framework at the beginning. Project manag-
ers have to find a tradeoff between manual testing
(similar – high – effort for every test run) and auto-
mated testing (higher effort for test framework imple-
mentation and lower effort for every additional test
run

 need for setting up TCs

2.

erated. Additionally, an event output can be

2.3

lternative devices (e.g., on distributed control
sy

ns (e.g.,
systems modifications.

3

test automaton framework application. Thus, the goal of

).
However, in automation systems engineering the

current observed practice relies mainly on manual and
limited testing in a hierarchical systems design. Addi-
tionally, automation products are designed graphically
(e.g., applying function blocks notation [10][21]) and
with structured text to implement systems requirements.
Based on these current practices the test coverage
seems to be rather low because of insufficient testing
tool support. The test framework, adopted from busi-
ness IT software development can help engineers in the
automation systems domain to increase test intensity in
a more efficient way. The framework for test automa-
tion allows a flexible configuration of components for
individual test runs. Nevertheless, a systematic compo-
nent approach is required to support test automation,
i.e., need for capturing information from various test
runs (diagnosis aspects) and
efficiently (testing aspects).

2 Concepts of the IEC 61499 Standard
In contrast to models for business IT software devel-

opment function blocks (FBs) are common practices for
modeling systems behavior in the automation systems
domain [22]. The IEC 61499 is a standard for Industrial
Process Measurement and Control Systems (IPMCS)
defining a function-block-oriented paradigm for dis-
tributed systems development. The standard includes
several models – application models, system models,
device models, resource models, and FB models –
which allow developing distributed control applications
using a graphical approach [10][12]. A FB, the base
model of the IEC 61499 family, is a software compo-
nent, which is self-contained and allocates its function-
ality through a determined interface. For instance, this
approach can be used to activate an actuator. Resultant,

the speed of processing the system configuration can be
increased and it brings more clarity to the software pro-
gram. It can build simple or sophisticated solutions us-
ing FBs or parts of software, each containing particular
algorithms, to configure a solution without the need for
programming from scratch [20]. The model interface
has been expanded from the interface of the IEC 61131-
3 standard and consists of two parts: the event and the
data interfaces. The data interface consists of data in-
and outputs, which are already presented at the FB in
IEC 61131-3. The interface is extended with an addi-
tional event interface. A trigger on the event inputs
starts the execution of the FB. During execution of the
FB the input data will be processed and the output data
will be gen
triggered.

Reconfiguration Approach
Current production automation systems need to be

flexible, adaptable, and have to allow for rapid changes
within short time intervals at low cost. The down-time
of a system, caused by system failures, changes and
maintenance tasks, is an important cost driver in flexible
production automation systems. Thus, there is a need to
support reconfiguration and maintenance tasks with low
or limited impact on the overall systems availability.
The concept of dynamically reconfigurable control
software components is a promising approach to in-
crease flexibility of systems and allows efficient modi-
fications and changes of a system with limited impact
on systems availability [22]. Examples for required dy-
namic reconfiguration of automation systems are: (a)
Modifications of functional behavior of the control pro-
gram; (b) Control program extensions to achieve added
value of the system; (c) Maintenance activities in terms
of replacing components; (d) Modifications of parame-
ters and software components; and (e) Shifting software
parts to a

stems.
Nevertheless, a flexible automation systems design is

required to (a) support these types of automation system
maintenance and (b) enable automated test ru
regression testing) after

Research Issues
Frequent and changing requirements and the need for

flexible reconfiguration of components and systems
require efficient testing mechanisms, e.g., provided by
automated testing approaches from business IT software
development. Nevertheless, a structured systems design,
i.e., separation of functional, diagnosis and test func-
tionality and efficient interaction mechanisms in a hier-
archical systems design is a precondition for successful

3

automating testing in the automation systems domain
leads to two research issues:
(a) How can we adapt the Test Framework for auto-

mated testing from business IT software develop-
ment to the automation systems domain? This re-
search issues focuses on the design and implemen-
tation of an automated testing framework to enable
frequent TC execution in various test runs. As re-
configuration is a key issue in the automation sys-
tems domain, the testing framework has to address
flexible and component-oriented systems design.

(b) Which component structure is required to enable
flexible and reconfigurable automation systems
and supports automated systems testing? Our ob-
servation in automation systems projects has been
that functional, diagnosis, and testing aspects are
intertwined in the software code and hinders effi-
cient development, maintenance, and testing. Thus,
a strict separation of individual aspects with well-
defined interfaces for systems and component in-
teraction is expected to increase maintainability,
testability and testing efficiency.

Further, FBs according to the IEC 61499 standard rep-
resent the state-of-the-art in important parts of the auto-
mation systems domain. Thus, both research issues
have to consider the implementation of components,
which are based on the IEC 61499 standard.

4 Component-based Test Automation in the
Automation Systems Domain

The application of the test framework from business
IT development enables an automated TC execution
based on various systems variants. This flexibility can
support (a) flexible arrangement and reconfiguration of
individual automation components and (b) frequent TC
execution.

4.1 Unit Test Framework for Automation
Systems

Based on the unit test framework, derived from busi-
ness IT software development and presented in section
2.1, we identified similar components for the test
framework in the automation systems domain: (a) a
Test Runner for test management, (b) Test Suites con-
sisting of sets of individual TCs, (c) Software/Systems
under test (SuT), and (d) Test Reports. The Test Runner
applies relevant TCs, derived from the Test Suite, to the
SuT and provides test reports for every test run (see
Figure 1 for a test report overview from a sample busi-
ness IT software project). Figure 3 illustrates the appli-
cation of the unit test framework from business IT
software development to the automation systems do-
main. Note that the SuT consists of a TDA component

(or assembled TDA components) encapsulating sepa-
rated functional aspects, diagnosis aspects, and testing
aspects with defined interaction via interfaces (see sec-
tion 4.2 for TDA component details).

Figure 3: Test Framework for Automated Test-
ing in the Automation Systems Domain.

The configuration of the SuT is a notable benefit of
the TDA approach, because every sub-component of a
TDA component, i.e., functional, diagnosis, and test
aspects, can be flexibly combined as needed by the ap-
plication. As defined interfaces are used for communi-
cation and data exchange within the TDA component
(internal communication) and for interaction with other
TDA components and/or sensors and actors (external
communication) within a hierarchical systems design,
the individual components can be exchanged and tested
easily. However, missing components must be mocked
in sufficient detail to simulate required behavior which
has not been implemented so far. Mock objects [11] are
common practices in business IT software development.

The application of the suggested test framework for
automated testing of automation systems enables sys-
tematic, frequent test runs and is a precondition for con-
tinuous integration [5] approaches in the automation
systems domain.

4.2 Test Automation Component Aspects
A strict separation of functional behavior (automa-

tion component), diagnosis functions (diagnosis com-
ponent), and test functions (test components) enables a
flexible exchange of variants for individual compo-
nents. Figure 4 illustrates an example and a more de-
tailed view on the TDA component and its interaction,
including functional aspects and interaction via defined
interfaces within a hierarchical systems design. Note
that the sensor and the valve are also represented as
TDA components including a similar component de-
sign.

4

Figure 4: Test-Driven Automation Component.

Basically, the individual components interact by ex-
changing data via the corresponding interfaces. The
interfaces allow the communication to higher-level
TDA components as well as to lower-level TDA com-
ponents. Because of the defined interfaces the compo-
nent variants are seamlessly exchangeable. Figure 4
presents an example: The automation component (A)
gets instructions from a higher level TDA component
via the functional interface (AI). After processing, the
instructions are passed via the diagnosis component (D)
to the lower-level TDA component, in our case the
valve. The diagnosis component obtains measurement
data via the diagnosis interface of the valve and for-
wards diagnosis information to (a) the automation com-
ponent (same level) to respond to instructions and (b)
via the diagnosis interface to a higher level component.
Regarding testing functionality, the test component (test
function) is able to set the system in a certain state to
check the response on defined system states, typically
error states that are typically hard to reach. For in-
stance, the testing function can simulate a blocking
valve or wrong sensor data, which can be addressed in
the test framework.

5 Test-Driven-Automation Component
applied to Distributed Control Systems

This section summarizes the results of a pilot appli-
cation (a simple triangle generation application) of the
TDA component based on a distributed control system
and is realized with the IEC 61499 standard. Further,
we illustrate the application of the suggested test auto-
mation framework for automated testing of this pilot
application.

5.1 Requirements and Specification
This pilot application describes the implementation

of a triangle generator with TDA components designed
according to the IEC 61499 standard. Major require-
ments include counting up to a predefined limit value
and – after reaching the limit – counting down to a pre-
defined offset value. We selected this kind of applica-
tion to demonstrate time-dependent systems behavior

with stateful characteristics within these time intervals.
Figure 5 illustrates the expected systems behavior of the
triangle generating system to derive parameters for TCs.

Li
m

it

Figure 5: Time Sequence Diagram of a Triangle
Generator with the Parameters.

Figure 6 presents the TDA component in IEC 61499
function blocks (FB) design. The TDA component con-
sists of a tester FB, a triangle generator FB, and a diag-
nosis FB realized as composite FBs. These composite
FBs comprise a network of basic FBs as their encapsu-
lation enhances clarity of the design. In more detail, the
FB diagram consists of three major entities:

FB 1. “Triangle_Gen” represents the functional in-
terface (e.g., automation interface of the TDA compo-
nent) and generates the curve of a triangle. Starting with
an event input on “INIT” (initialization) the FB con-
firms on the event output “INITO”. The calculation of
the FB starts with the event input “START”. At the end
of one calculated cycle, an event output will be sent on
indication “IND”. Additional data input parameters are
offset, periodic time, sampling interval, and limit value,
which are illustrated in Figure 5. After finishing calcu-
lation, the output data are available. Note that the pre-
sent value (PV) represents the actual value of the incli-
nation. If PV is zero, the Boolean value Q0 is true, oth-
erwise Q0 is false. If the value of PV is higher than the
limit value, the Boolean value Q is true.

FB 2. “Tester” (via testing interface) defines the
predefined values offset, periodic time, sampling inter-
val, and limit (see Figure 6) as its data output. The FB
“Tester” emits predefined test data parameters to test
the system and receives the measurement parameters
PV, Q0, and Q from the triangle generator. These pa-
rameters in combination with the predefined values cal-
culate the state of the triangle generator. That means
that the behavior of the system under test can be ma-
nipulated by the predefined parameter values. The FB
“Tester” is initialized by the event input “INIT”. At this

5

time the predefined values like limit are provided at the
data output and this is confirmed by the event output
“INITO”. The event input “REQ” is triggered after the

complete initialization of all FBs and confirmed by the
event output “CNF”.

Figure 6: Sample Application with applied Function Blocks in IEC 61499.

Table 1: Sample Test Cases for Triangle Generator Application.

No. Description Level Type* Pre-condition Input Expected Result Post-condition

1 Set Limit to a defined value Comp. NC System running Upper limit = 100 Limit set to 100 Modified limit

2 Set Limit to a negative value Comp. EC System running
Limit = 100

Upper limit = -10 Error message No modification of triangle
limit (Limit = 100)

3 Upper Limit and offset are
similar

Comp. SC System running,
limit=offset=20

Upper Limit = 20
Offset=20

Constant signal

System warning.

Limit and offset = 20
Warning displayed

4 No limit signal.
Missing connection between
Tester and Triangle_gen.

Comp. EC System running
current limit=20

Upper limit = 100 Error message No modification of the
limit (Limit=20), error
message

* Note that test cases should include normal test cases (NC), special test cases (SC) representing systems behavior in the border area of regular systems
behavior, and error cases (EC) for testing the error states of the system design.

FB 3. “Diagnosis” (diagnosis interface) gets all values
from the tester FB and the triangle generator FB. The main
task of the diagnosis component is to log all changes of the
system, in this case the triangle generator, and to define
independently and automatically the important variances
for reporting them to other components (e.g., to a higher
level). Therefore the time jitter of the sampling interval can
be measured and the inclination failure can be detected.
The diagnosis FB needs to be initialized with the event
input “INIT”, which is confirmed by the event output
“INITO”. All changes of the triangle generator are trig-
gered by the event input “REQ”. If the internal execution
of the diagnosis component is finished an output event

“IND” is sent. This design enables efficient TC genera-
tion as a pre-condition for automated testing.

5.2 Test Automation and Test Cases
Traditional TCs in the automation systems domain

are defined and executed manually. For instance a
modification of the graphical representation (see Figure
6) describes a certain TC. In context of automated test-
ing using a testing framework, a test runner provides the
setup of individual test scenario. For instance, individ-
ual TC variants can be exchanged easy (e.g., parameter
change). Nevertheless, the variation of automation and
diagnosis components require an online reconfiguration

6

system. The test runner enables an automated TC organiza-
tion and execution of individual settings. Because of con-
figuration options, various settings can be executed auto-
matically. Selected TCs are applied to SuT configuration
automatically and test reports are generated based on the
current configuration. Table 1 presents a set of selected
TCs for testing the set-functionality of the upper boarder of
the triangle functionality. The testing aspect provides vari-
ous limits (normal cases, special cases, and error cases)
with respect to the automation function and the diagnosis
aspect reports current status information on the current sys-
tems behavior. The results of every test run is reported and
documented in a test report.

A benefit of the TDA approach is the ability to handle
various settings of (a) the System under Test and (b) the
implementation of test settings (i.e., TCs). For instance, the
stable interface of the TDA design enables the replacement
of individual composite FBs, e.g., the underlying FBs of
the triangle component as long as the interfaces (and the
communication between various components) remain sta-
ble (reconfiguration of the current setting). Also, test set-
ting variants can be executed automatically. The overall
setup of the tests is controlled and managed by the Test
Runner.

5.3 Reconfiguration of TDA Aspects and
Components

To show the benefits of the TDA component approach
and its ability to support reconfiguration, we applied a FB
approach based on the IEC 61499 standard and used the
capabilities of the FBDK [8] and 4DIAC-IDE [1] tools for
modeling. For instance, the TDA approach enables a man-
ual modification of parameters for the “Tester” FB. In con-
text of this paper, modifying parameters refers to parameter
exchange and not to a common system reconfiguration
processes as described in [23]. In case of changing test pa-
rameters, the tests have to be stopped, initialized with
modified parameters, and restarted (e.g., realized as event
input “CONF” and event output “CONFO” within the
automation component in Figure 6). Configuration in the
automation systems domain requires an online configura-
tion process including hardware and software components.

A second option for reconfiguration refers to the ex-
change of individual components, e.g., the diagnosis and/or
automation components. This reconfiguration process in-
cludes an online reconfiguration involving software and
hardware components (see section 2.3 for details) [7][8].

6 Conclusion and Further Work

The increasing need for flexibility in the automation sys-
tems domain and the trend to shift functionality from hard-
ware to software solutions lead to increased complexity of

software components. Up to now, code-and-fix ap-
proaches in software development of systems engineer-
ing hinder efficient development and maintenance proc-
esses. The increasing complexity and the observed sys-
tems engineering processes require more efficient and
frequent testing approaches. Unfortunately, automation
functions, testing functions, and diagnosis functions are
largely intertwined in the code and tests are typically
conducted manually (setup of TCs and test procedures)
by using a graphical approach. Thus, each TC and TC
variants are treated as a separate configuration (maybe
even a separate “project”), which requires a high effort,
i.e., similar effort for every test case definition and exe-
cution, in case of changes during development and
maintenance.

Thus, we reported on the need for (a) separating
automation, testing, and diagnosis aspects to enable
systematic systems development and (b) to introduce
the concept of automated testing in the automation sys-
tems domain to enable efficient verification and valida-
tion processes. Based on the experience from business
IT software development, we presented (a) an approach
for a test automation framework and (b) a test-driven
automation (TDA) component design which enables
efficient and flexible exchange of functional, testing,
and diagnosis aspects including defined internal and
external interaction. To illustrate these concepts, we
showed the design of a TDA component using a small
pilot application based on FBs according to the IEC
61499 and the application of the suggested test automa-
tion framework.

An interesting finding was that the individual FBs,
describing functional, diagnosis and test aspects are
represented by individual classes (e.g., in Java by apply-
ing FBDK or C) which enable the application of test
automation practices from business IT development.
Additionally, a configuration file (e.g., represented in
XML format) is used to setup the configuration of an
individual application. The nature of handling individ-
ual components and configurations in the automation
systems domain enables (a) reconfiguration of systems
if the interfaces are comparable and (b) can be tested
automatically by applying a component-based test
automation framework. The defined interaction via in-
terfaces and the systematic separation of the TDA sub-
components enable flexible and exchangeable handling
of the individual components in terms of reconfigura-
tion. Additionally, the implementation of the test frame-
work provides a promising approach for systematic and
frequently automated test runs and enables efficient
verification and validation.

As limitation of the proposed solution we see the ap-
plication of the proposed approaches with legacy sys-
tems as the introduction and the technological change

7

8

may require considerable effort, e.g., extensive redesign
which seems to be comparable to a new project. This ap-
proach might not be reasonable for an existing systems
solution.

Further work includes (a) a refinement of the TDA com-
ponent approach to learn details on the application oppor-
tunities, (b) the implementation and evaluation of the TDA
component in a more complex automation systems solu-
tion, (c) the implementation of the purposed automated
testing approach to investigate the benefits of automated
testing in the automation systems domain, and (d) the in-
vestigation of the test automation framework in larger pro-
ject contexts to verify the expected benefits.

Acknowledgements

We want to thank our partners from academia and in-
dustry in the logi.DIAG project for their valuable discus-
sions and feedback. Parts of this work were funded by the
Austrian Research Funding Agency (FFG) grant logi.DIAG
(Bridge7-196929).

References

[1] 4DIAC, Framework for Distributed Industrial Auto-
mation and Control - Runtime Environment and IDE,
http://www.fordiac.org, last access April 2009.

[2] Beedle M., Schwaber K.: Agile Software Develop-
ment with Scrum, Prentice Hall, 2008.

[3] Biffl S., Winkler D., Höhn R., Wetzel H.: Software
Process Improvement in Europe: Potential of the new
V-Modell XT and Research Issues, in SPIP 11(3),
pp.229-238, Wiley, 2006.

[4] Damm L.-O., Lundberg L.: Quality Impact of Intro-
ducting Component-Level Test Automation and Test-
Driven Development, Proc. EuroSPI, 2007.

[5] Duvall M.P., Matyas S., Glover A.: Continuous Inte-
gration: Improving Software Quality and Reducing
Risk, Addison-Wesley, 2007.

[6] Hamill P.: Unit Test Framework, O'Reilly Media,
ISBN-10: 0596006896. 2004.

[7] Hummer O., Downtimeless System Evolution: Cur-
rent State and Future Trends, IEEE 2007

[8] HOLOBLOC, Inc. FBDK – The Function Block De-
velopment Kit, http://www.holobloc.com, last access
April 2009.

[9] Höhn R., Höppner S.: Das V-Modell XT. Grundlagen,
Methodik und Anwendungen, eXamen Press, 2008.

[10] IEC 61499-1. Function blocks - Part 1: Architecture.
International Electrical Commission, Geneva, 2005.
Public Available Specification.

[11] Karlesky M., Williams G.: Mocking the Embed-
ded World: Test-Driven Development, Continu-
ous Integration, and Design Patterns, Proc. Emb.
Systems Conf, CA, USA, 2007.

[12] Lewis R.: Modelling control systems using IEC
61499 – Applying function blocks to distributed
systems. The Institution of Electrical Engineers,
London, UK, 2001. ISBN 0-85296-796-9.

[13] logi.DIAG: Test-Driven Automation in Systems
Environments, http://www.logidiag.at (last access:
16.06.2009).

[14] Karlesky M., Williams G.: Mocking the Embedded
World: Test-Driven Development, Continuous In-
tegration, and Design Patterns, Proc. Emb. Sys-
tems Conf, CA, USA, 2007.

[15] Nandi S., Toliyat H.A.: Condition Monitoring and
Fault Diagnosis of Electrical Machines, Conf on
Industry Applications, Phoenix, US, 1999.

[16] Sünder C., Zoitl A, Dutzler C.: Functional Struc-
ture-Based modelling of Automation Systems,
Jounal of Manufacturing Research, 1(4), pp405-
420, 2007.

[17] V-Modell XT Framrwork: http://www.v-modell-
xt.de/ (last access: 16.06.2009).

[18] Whalen MW., Rajan A., Heimdahl MPE, Miller
SP.: Coverage Metrics for Requirements-Based
Testing, Proc. of Int. Symp on Software Testing
and Analysis, Portland, US, 2006.

[19] Winkler D., Biffl S., Östreicher T.: Test-Driven
Automation – Adopting Test-First Development to
Improve Automation Systems Engineering Proc-
esses, to appear at EuroSPI, Madrid, Spain, 2009.

[20] Xia F., Wang Z. and Sun Y.: Towards Compo-
nent-Based Control System Engineering with
IEC61499, National Laboratory of Industrial Con-
trol Technology, Hangzhou, China, 2004.

[21] Zhang W., Diedrich C., Halang W.A.: Specifica-
tion and Verification of Applications Based on
Function Blocks, Computer-Based Software De-
velopment for Embedded Systems (LNCS 3778),
Springer, 2005.

[22] Zoitl A.: Real-time Execution for IEC 61499, ISA,
ISBN-10: 1934394270, 2008.

[23] Zoitl A.: Dynamic Reconfiguration of Distributed
Control Applications with Reconfiguration Ser-
vices based on IEC 61499, Proceedings of the
IEEE Workshop on Distributed Intelligent Sys-
tems: Collective Intelligence and Its Applications
(DIS’06), 2006.

