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Abstract

Automation systems software must provide sufficient 
diagnosis information for testing to enable early defect 
detection and quality measurement. However, in many 
automation systems the aspects of automation, testing, 
and diagnosis are intertwined in the code. This makes 
the code harder to read, modify, and test. In this paper 
we introduce the design of a test-driven automation 
(TDA) component with separate aspects for automa-
tion, diagnosis, and testing to improve testability and 
test efficiency. We illustrate with a prototype, how 
automation component aspects allow flexible configu-
ration of a “system under test” for test automation. 
Major result of the pilot application is that the TDA 
concept was found usable and useful to improve testing 
efficiency. 

Key words: Test-Driven Automation, Test automation, 
Automation Component, Automation Software Devel-
opment. 

1. Introduction

An increasing part of added functionality in modern 
automation systems is implemented in software. Thus, 
software components become more complex. Systems 
requirements may change even late in the development 
process, lead to ad-hoc modifications of the product, 
and require systematic testing approaches. In current 
automation systems development products, software 
code and testing code is often intertwined in the code, 
which hinders efficient and systematic testing. Thus the 
code is hard to read and to modify during development 
and maintenance. Diagnosis functions are preconditions 
to evaluate the current status for a system under devel-
opment and are the basis for defect prediction during 
operation and maintenance of a system [15]. Similar to 

test functionality, diagnosis aspects are typically scat-
tered unsystematically in the code, which hinders the 
integration of individual diagnosis aspects into a com-
prehensive diagnosis strategy. Thus, diagnosis compo-
nents are treated as add-ons (e.g., by applying external 
measurement) and separated from the logical system 
behavior. Nevertheless, the early integration of testing 
and diagnosis aspects during systems development can 
increase product quality and project development effi-
ciency significantly [19].

Testing variants of an individual component (e.g., in 
a component library) is an increasing challenge in sys-
tems automation design. Thus, frequent reconfiguration 
of components is a key issue in modern systems devel-
opment [22]. Increasing software complexity, availabil-
ity of automation component variants, and late changing 
systems requirements require flexible and efficient 
mechanisms for design and testing (e.g., efficient recon-
figuration of components and frequent test runs). Auto-
mated and frequent testing – a common practice in busi-
ness IT software development [5] – enables early defect 
detection and helps identifying side effects.  

Following a systematic design approach in the auto-
mation systems domain, we identified three major as-
pects in the design of a testable automation systems 
component [13]: (a) automation aspects represent the 
logical behavior of the system, (b) diagnosis aspects
refer to measurement of the current systems behavior, 
and (c) testing aspects enable the setup for automated 
unit test cases. Testing aspects also support scenarios 
which are typically hard to test, e.g., by setting the sys-
tem into a certain error state, which could appear during 
operation in case of device errors.  

In this paper we introduce a design that structures 
aspects for automation components with a focus on 
automation, diagnosis, and testing functions. The sepa-
ration of functional, diagnosis, and testing aspects en-
able flexible system reconfiguration and supports auto-
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mated testing approaches to improve testability and test 
efficiency. We illustrate the automation component 
aspects in a prototype showcase that shows how the 
automation component allows flexible configuration of 
a system under test for test automation.  

The remainder of this paper is structured as follows: 
Section 2 presents the related work on unit test automa-
tion in software engineering as a basis for the applica-
tion in the automation systems domain and presents the 
concept of the IEC 61499 standard with respect to the 
test-driven automation component (TDA component) 
prototype. Section 3 describes the research issues. Sec-
tion 4 summarizes the concept for automated unit test-
ing, introduces the design for the TDA component, and 
illustrates the interaction of the TDA component with 
other TDA components and hardware interfaces. We 
present a pilot application and discuss lessons learned 
and findings in section 5. Finally, section 6 concludes 
and identifies future work.  

2. Related Work

This section summarizes related work on unit test 
automation in software engineering and introduces to 
the automation systems domain. 

2.1 Automating Software Unit Tests 
Testing in traditional IT Software development proc-

esses (e.g., sequential development approaches like the 
V-Modell XT) focus on an early definition of test cases 
(TCs) and a late execution of these TCs after designing 
and implementing the software product [3][8]. This 
test-first approach, e.g., early definition of TCs based 
on requirements, enables an increased understanding of 
the product and the application domain before imple-
mentation and early defect detection and correction if a 
TC cannot be defined properly [4]. The increasing need 
for flexibility fosters the application of agile develop-
ment process approaches, e.g., SCRUM, to respond to 
frequent changing requirements [1]. Test-Driven devel-
opment (TDD) is a common agile practice for business 
IT software development with focus on small and man-
ageable iterations. The TDD approach consists of 4 
major steps [4]: (1) Think. Select a specific requirement 
and implement the corresponding TC prior to the im-
plementation of the functional behavior; (2) Red Test 
Result. Execute the TC. As there is no correct imple-
mentation the TC must fail; (3) Green Test Result. On-
going implementation of the test-case related function-
ality and TC execution until the TC passes; (4) Refac-
tor. Optimize the implementation design without chang-
ing functionality and execute TCs. After finishing step 
4, select the next batch of requirements. 

Figure 1: Test Execution Reports [19].

The application of this TDD approach leads to auto-
mated frequent testing and can be included in a con-
tinuous integration strategy [5]. Figure 1 presents a 
sample snapshot of TDD application in a business IT 
software development project. Requirements are broken 
down to TCs and implementation tasks which are tested 
in various and frequent test runs. Because of this con-
tinuous integration strategy the current project state 
remains transparent along the product development life-
cycle. Even side effects, i.e., other TCs and/or require-
ments are affected by individual test runs negatively, 
can be identified easily. For instance, test execution of 
TC B2 (requirement B) has a negative impact on TC A2 
(requirement A) in test run 8. Note that these short itera-
tions allow the identification and removal of defects 
early.

Nevertheless, a continuous integration approach re-
quires an appropriate test framework which enables 
frequent execution of a high number of TCs in a certain 
system setting [5]. Note that the test framework also 
includes mock objects to simulate not implemented sys-
tems behavior to enable automated testing of compo-
nents or systems [13].

Software Under 
Test (SuT) Test Report (TR)

Test Suite

Test Case 1

Test Case 2

...

Test Case n

SuT (V1)

SuT (V2)

...

SuT (Vn)

Software 
Configuration

Test Runner

TR 1
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...

TR n

Test Cases Test Runs
Test 
Results

Test 
Results

Figure 2: Test Framework for Automated Test-
ing.

Figure 2 presents a schematic overview of a test 
framework, e.g., based on Unit Tests [6], for automated 
TC execution: A number of individual TCs are collected 
in a Test Suite. The Software under Test (SuT) is a con-
figuration of the software and systems product (e.g., 
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component versions and/or variants). The Test Runner 
applies the TCs to the SuT and provides fast feedback 
on the test results, which are presented by Test Reports 
(TR). Experiences from the development of business IT 
software system show that even small applications re-
quire a considerable number of TCs for sufficient test 
coverage. Test coverage refers to the degree of covering 
all code fragments by TCs [18]. In practice, the high 
effort to run these tests manually limits the testing in-
tensity in a project with limited resources. Test automa-
tion encourages high testing intensity for each new 
software version. Nevertheless, the application of auto-
mated testing requires additional effort for the setup of 
the testing framework at the beginning. Project manag-
ers have to find a tradeoff between manual testing 
(similar – high – effort for every test run) and auto-
mated testing (higher effort for test framework imple-
mentation and lower effort for every additional test 
run

 need for setting up TCs 

2.

erated. Additionally, an event output can be 

2.3

lternative devices (e.g., on distributed control 
sy

ns (e.g., 
systems modifications. 
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test automaton framework application. Thus, the goal of 

).
However, in automation systems engineering the 

current observed practice relies mainly on manual and 
limited testing in a hierarchical systems design. Addi-
tionally, automation products are designed graphically 
(e.g., applying function blocks notation [10][21]) and 
with structured text to implement systems requirements. 
Based on these current practices the test coverage 
seems to be rather low because of insufficient testing 
tool support. The test framework, adopted from busi-
ness IT software development can help engineers in the 
automation systems domain to increase test intensity in 
a more efficient way. The framework for test automa-
tion allows a flexible configuration of components for 
individual test runs. Nevertheless, a systematic compo-
nent approach is required to support test automation, 
i.e., need for capturing information from various test 
runs (diagnosis aspects) and
efficiently (testing aspects). 

2 Concepts of the IEC 61499 Standard 
In contrast to models for business IT software devel-

opment function blocks (FBs) are common practices for 
modeling systems behavior in the automation systems 
domain [22]. The IEC 61499 is a standard for Industrial 
Process Measurement and Control Systems (IPMCS) 
defining a function-block-oriented paradigm for dis-
tributed systems development. The standard includes 
several models – application models, system models, 
device models, resource models, and FB models – 
which allow developing distributed control applications 
using a graphical approach [10][12]. A FB, the base 
model of the IEC 61499 family, is a software compo-
nent, which is self-contained and allocates its function-
ality through a determined interface. For instance, this 
approach can be used to activate an actuator. Resultant, 

the speed of processing the system configuration can be 
increased and it brings more clarity to the software pro-
gram. It can build simple or sophisticated solutions us-
ing FBs or parts of software, each containing particular 
algorithms, to configure a solution without the need for 
programming from scratch [20]. The model interface 
has been expanded from the interface of the IEC 61131-
3 standard and consists of two parts: the event and the 
data interfaces. The data interface consists of data in- 
and outputs, which are already presented at the FB in 
IEC 61131-3. The interface is extended with an addi-
tional event interface. A trigger on the event inputs 
starts the execution of the FB. During execution of the 
FB the input data will be processed and the output data 
will be gen
triggered.

Reconfiguration Approach 
Current production automation systems need to be 

flexible, adaptable, and have to allow for rapid changes 
within short time intervals at low cost. The down-time 
of a system, caused by system failures, changes and 
maintenance tasks, is an important cost driver in flexible 
production automation systems. Thus, there is a need to 
support reconfiguration and maintenance tasks with low 
or limited impact on the overall systems availability. 
The concept of dynamically reconfigurable control 
software components is a promising approach to in-
crease flexibility of systems and allows efficient modi-
fications and changes of a system with limited impact 
on systems availability [22]. Examples for required dy-
namic reconfiguration of automation systems are: (a) 
Modifications of functional behavior of the control pro-
gram; (b) Control program extensions to achieve added 
value of the system; (c) Maintenance activities in terms 
of replacing components; (d) Modifications of parame-
ters and software components; and (e) Shifting software 
parts to a

stems. 
Nevertheless, a flexible automation systems design is 

required to (a) support these types of automation system 
maintenance and (b) enable automated test ru
regression testing) after 

Research Issues 
Frequent and changing requirements and the need for 

flexible reconfiguration of components and systems 
require efficient testing mechanisms, e.g., provided by 
automated testing approaches from business IT software 
development. Nevertheless, a structured systems design, 
i.e., separation of functional, diagnosis and test func-
tionality and efficient interaction mechanisms in a hier-
archical systems design is a precondition for successful 
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automating testing in the automation systems domain 
leads to two research issues: 
(a) How can we adapt the Test Framework for auto-

mated testing from business IT software develop-
ment to the automation systems domain? This re-
search issues focuses on the design and implemen-
tation of an automated testing framework to enable 
frequent TC execution in various test runs. As re-
configuration is a key issue in the automation sys-
tems domain, the testing framework has to address 
flexible and component-oriented systems design.  

(b) Which component structure is required to enable 
flexible and reconfigurable automation systems 
and supports automated systems testing? Our ob-
servation in automation systems projects has been 
that functional, diagnosis, and testing aspects are 
intertwined in the software code and hinders effi-
cient development, maintenance, and testing. Thus, 
a strict separation of individual aspects with well-
defined interfaces for systems and component in-
teraction is expected to increase maintainability, 
testability and testing efficiency.  

Further, FBs according to the IEC 61499 standard rep-
resent the state-of-the-art in important parts of the auto-
mation systems domain. Thus, both research issues 
have to consider the implementation of components, 
which are based on the IEC 61499 standard. 

4 Component-based Test Automation in the 
Automation Systems Domain 

The application of the test framework from business 
IT development enables an automated TC execution 
based on various systems variants. This flexibility can 
support (a) flexible arrangement and reconfiguration of 
individual automation components and (b) frequent TC 
execution.

4.1 Unit Test Framework for Automation 
Systems

Based on the unit test framework, derived from busi-
ness IT software development and presented in section 
2.1, we identified similar components for the test 
framework in the automation systems domain: (a) a 
Test Runner for test management, (b) Test Suites con-
sisting of sets of individual TCs, (c) Software/Systems 
under test (SuT), and (d) Test Reports. The Test Runner 
applies relevant TCs, derived from the Test Suite, to the 
SuT and provides test reports for every test run (see 
Figure 1 for a test report overview from a sample busi-
ness IT software project). Figure 3 illustrates the appli-
cation of the unit test framework from business IT 
software development to the automation systems do-
main. Note that the SuT consists of a TDA component 

(or assembled TDA components) encapsulating sepa-
rated functional aspects, diagnosis aspects, and testing 
aspects with defined interaction via interfaces (see sec-
tion 4.2 for TDA component details). 

Figure 3: Test Framework for Automated Test-
ing in the Automation Systems Domain. 

The configuration of the SuT is a notable benefit of 
the TDA approach, because every sub-component of a 
TDA component, i.e., functional, diagnosis, and test 
aspects, can be flexibly combined as needed by the ap-
plication. As defined interfaces are used for communi-
cation and data exchange within the TDA component 
(internal communication) and for interaction with other 
TDA components and/or sensors and actors (external
communication) within a hierarchical systems design, 
the individual components can be exchanged and tested 
easily. However, missing components must be mocked 
in sufficient detail to simulate required behavior which 
has not been implemented so far. Mock objects [11] are 
common practices in business IT software development. 

The application of the suggested test framework for 
automated testing of automation systems enables sys-
tematic, frequent test runs and is a precondition for con-
tinuous integration [5] approaches in the automation 
systems domain.  

4.2 Test Automation Component Aspects 
A strict separation of functional behavior (automa-

tion component), diagnosis functions (diagnosis com-
ponent), and test functions (test components) enables a 
flexible exchange of variants for individual compo-
nents. Figure 4 illustrates an example and a more de-
tailed view on the TDA component and its interaction, 
including functional aspects and interaction via defined 
interfaces within a hierarchical systems design. Note 
that the sensor and the valve are also represented as 
TDA components including a similar component de-
sign. 
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Figure 4: Test-Driven Automation Component. 

Basically, the individual components interact by ex-
changing data via the corresponding interfaces. The 
interfaces allow the communication to higher-level 
TDA components as well as to lower-level TDA com-
ponents. Because of the defined interfaces the compo-
nent variants are seamlessly exchangeable. Figure 4
presents an example: The automation component (A) 
gets instructions from a higher level TDA component 
via the functional interface (AI). After processing, the 
instructions are passed via the diagnosis component (D) 
to the lower-level TDA component,  in our case the 
valve. The diagnosis component obtains measurement 
data via the diagnosis interface of the valve and for-
wards diagnosis information to (a) the automation com-
ponent (same level) to respond to instructions and (b) 
via the diagnosis interface to a higher level component. 
Regarding testing functionality, the test component (test 
function) is able to set the system in a certain state to 
check the response on defined system states, typically 
error states that are typically hard to reach. For in-
stance, the testing function can simulate a blocking 
valve or wrong sensor data, which can be addressed in 
the test framework.  

5 Test-Driven-Automation Component 
applied to Distributed Control Systems 

This section summarizes the results of a pilot appli-
cation (a simple triangle generation application) of the 
TDA component based on a distributed control system 
and is realized with the IEC 61499 standard. Further, 
we illustrate the application of the suggested test auto-
mation framework for automated testing of this pilot 
application. 

5.1 Requirements and Specification 
This pilot application describes the implementation 

of a triangle generator with TDA components designed 
according to the IEC 61499 standard. Major require-
ments include counting up to a predefined limit value 
and – after reaching the limit – counting down to a pre-
defined offset value. We selected this kind of applica-
tion to demonstrate time-dependent systems behavior 

with stateful characteristics within these time intervals. 
Figure 5 illustrates the expected systems behavior of the 
triangle generating system to derive parameters for TCs.  

Li
m

it

Figure 5: Time Sequence Diagram of a Triangle 
Generator with the Parameters. 

Figure 6 presents the TDA component in IEC 61499 
function blocks (FB) design. The TDA component con-
sists of a tester FB, a triangle generator FB, and a diag-
nosis FB realized as composite FBs. These composite 
FBs comprise a network of basic FBs as their encapsu-
lation enhances clarity of the design. In more detail, the 
FB diagram consists of three major entities:  

FB 1. “Triangle_Gen” represents the functional in-
terface (e.g., automation interface of the TDA compo-
nent) and generates the curve of a triangle. Starting with 
an event input on “INIT” (initialization) the FB con-
firms on the event output “INITO”. The calculation of 
the FB starts with the event input “START”. At the end 
of one calculated cycle, an event output will be sent on 
indication “IND”. Additional data input parameters are 
offset, periodic time, sampling interval, and limit value, 
which are illustrated in Figure 5. After finishing calcu-
lation, the output data are available. Note that the pre-
sent value (PV) represents the actual value of the incli-
nation. If PV is zero, the Boolean value Q0 is true, oth-
erwise Q0 is false. If the value of PV is higher than the 
limit value, the Boolean value Q is true. 

FB 2. “Tester” (via testing interface) defines the 
predefined values offset, periodic time, sampling inter-
val, and limit (see Figure 6) as its data output. The FB 
“Tester” emits predefined test data parameters to test 
the system and receives the measurement parameters 
PV, Q0, and Q from the triangle generator. These pa-
rameters in combination with the predefined values cal-
culate the state of the triangle generator. That means 
that the behavior of the system under test can be ma-
nipulated by the predefined parameter values. The FB 
“Tester” is initialized by the event input “INIT”. At this 
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time the predefined values like limit are provided at the 
data output and this is confirmed by the event output 
“INITO”. The event input “REQ” is triggered after the 

complete initialization of all FBs and confirmed by the 
event output “CNF”. 

Figure 6: Sample Application with applied Function Blocks in IEC 61499. 

Table 1: Sample Test Cases for Triangle Generator Application. 

No. Description Level Type* Pre-condition Input Expected Result Post-condition

1 Set Limit to a defined value Comp. NC System running Upper limit = 100 Limit set to 100 Modified limit  

2 Set Limit to a negative value Comp. EC System running
Limit = 100 

Upper limit = -10 Error message No modification of triangle 
limit (Limit = 100) 

3 Upper Limit and offset are 
similar 

Comp. SC System running,
limit=offset=20 

Upper Limit = 20 
Offset=20 

Constant signal

System warning. 

Limit and offset = 20  
Warning displayed 

4 No limit signal. 
Missing connection between 
Tester and Triangle_gen.

Comp. EC System running 
current limit=20 

Upper limit = 100 Error message No modification of the 
limit (Limit=20), error 
message  

* Note that test cases should include normal test cases (NC), special test cases (SC) representing systems behavior in the border area of regular systems 
behavior, and error cases (EC) for testing the error states of the system design. 

FB 3. “Diagnosis” (diagnosis interface) gets all values 
from the tester FB and the triangle generator FB. The main 
task of the diagnosis component is to log all changes of the 
system, in this case the triangle generator, and to define 
independently and automatically the important variances 
for reporting them to other components (e.g., to a higher 
level). Therefore the time jitter of the sampling interval can 
be measured and the inclination failure can be detected. 
The diagnosis FB needs to be initialized with the event 
input “INIT”, which is confirmed by the event output 
“INITO”. All changes of the triangle generator are trig-
gered by the event input “REQ”. If the internal execution 
of the diagnosis component is finished an output event 

“IND” is sent. This design enables efficient TC genera-
tion as a pre-condition for automated testing.  

5.2 Test Automation and Test Cases 
Traditional TCs in the automation systems domain 

are defined and executed manually. For instance a 
modification of the graphical representation (see Figure 
6) describes a certain TC. In context of automated test-
ing using a testing framework, a test runner provides the 
setup of individual test scenario. For instance, individ-
ual TC variants can be exchanged easy (e.g., parameter 
change). Nevertheless, the variation of automation and 
diagnosis components require an online reconfiguration 
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system. The test runner enables an automated TC organiza-
tion and execution of individual settings. Because of con-
figuration options, various settings can be executed auto-
matically. Selected TCs are applied to SuT configuration 
automatically and test reports are generated based on the 
current configuration. Table 1 presents a set of selected 
TCs for testing the set-functionality of the upper boarder of
the triangle functionality. The testing aspect provides vari-
ous limits (normal cases, special cases, and error cases) 
with respect to the automation function and the diagnosis 
aspect reports current status information on the current sys-
tems behavior. The results of every test run is reported and 
documented in a test report.  

A benefit of the TDA approach is the ability to handle 
various settings of (a) the System under Test and (b) the 
implementation of test settings (i.e., TCs). For instance, the 
stable interface of the TDA design enables the replacement 
of individual composite FBs, e.g., the underlying FBs of 
the triangle component as long as the interfaces (and the 
communication between various components) remain sta-
ble (reconfiguration of the current setting). Also, test set-
ting variants can be executed automatically. The overall 
setup of the tests is controlled and managed by the Test 
Runner. 

5.3 Reconfiguration of TDA Aspects and 
Components

To show the benefits of the TDA component approach 
and its ability to support reconfiguration, we applied a FB 
approach based on the IEC 61499 standard and used the 
capabilities of the FBDK [8] and 4DIAC-IDE [1] tools for 
modeling. For instance, the TDA approach enables a man-
ual modification of parameters for the “Tester” FB. In con-
text of this paper, modifying parameters refers to parameter 
exchange and not to a common system reconfiguration 
processes as described in [23]. In case of changing test pa-
rameters, the tests have to be stopped, initialized with 
modified parameters, and restarted (e.g., realized as event 
input “CONF” and event output “CONFO” within the 
automation component in Figure 6). Configuration in the 
automation systems domain requires an online configura-
tion process including hardware and software components.  

A second option for reconfiguration refers to the ex-
change of individual components, e.g., the diagnosis and/or 
automation components. This reconfiguration process in-
cludes an online reconfiguration involving software and 
hardware components (see section 2.3 for details) [7][8].

6 Conclusion and Further Work 

The increasing need for flexibility in the automation sys-
tems domain and the trend to shift functionality from hard-
ware to software solutions lead to increased complexity of 

software components. Up to now, code-and-fix ap-
proaches in software development of systems engineer-
ing hinder efficient development and maintenance proc-
esses. The increasing complexity and the observed sys-
tems engineering processes require more efficient and 
frequent testing approaches. Unfortunately, automation 
functions, testing functions, and diagnosis functions are 
largely intertwined in the code and tests are typically 
conducted manually (setup of TCs and test procedures) 
by using a graphical approach. Thus, each TC and TC 
variants are treated as a separate configuration (maybe 
even a separate “project”), which requires a high effort, 
i.e., similar effort for every test case definition and exe-
cution, in case of changes during development and 
maintenance.  

Thus, we reported on the need for (a) separating 
automation, testing, and diagnosis aspects to enable 
systematic systems development and (b) to introduce 
the concept of automated testing in the automation sys-
tems domain to enable efficient verification and valida-
tion processes. Based on the experience from business 
IT software development, we presented (a) an approach 
for a test automation framework and (b) a test-driven 
automation (TDA) component design which enables 
efficient and flexible exchange of functional, testing, 
and diagnosis aspects including defined internal and 
external interaction. To illustrate these concepts, we 
showed the design of a TDA component using a small 
pilot application based on FBs according to the IEC 
61499 and the application of the suggested test automa-
tion framework. 

An interesting finding was that the individual FBs, 
describing functional, diagnosis and test aspects are 
represented by individual classes (e.g., in Java by apply-
ing FBDK or C) which enable the application of test 
automation practices from business IT development. 
Additionally, a configuration file (e.g., represented in 
XML format) is used to setup the configuration of an 
individual application. The nature of handling individ-
ual components and configurations in the automation 
systems domain enables (a) reconfiguration of systems 
if the interfaces are comparable and (b) can be tested 
automatically by applying a component-based test 
automation framework. The defined interaction via in-
terfaces and the systematic separation of the TDA sub-
components enable flexible and exchangeable handling 
of the individual components in terms of reconfigura-
tion. Additionally, the implementation of the test frame-
work provides a promising approach for systematic and 
frequently automated test runs and enables efficient 
verification and validation. 

As limitation of the proposed solution we see the ap-
plication of the proposed approaches with legacy sys-
tems as the introduction and the technological change 
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may require considerable effort, e.g., extensive redesign 
which seems to be comparable to a new project. This ap-
proach might not be reasonable for an existing systems 
solution.  

Further work includes (a) a refinement of the TDA com-
ponent approach to learn details on the application oppor-
tunities, (b) the implementation and evaluation of the TDA 
component in a more complex automation systems solu-
tion, (c) the implementation of the purposed automated 
testing approach to investigate the benefits of automated 
testing in the automation systems domain, and (d) the in-
vestigation of the test automation framework in larger pro-
ject contexts to verify the expected benefits. 
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