

Product/ion-Aware Modeling Approaches that Support Tracing Design Decisions

Christian Doppler Research AssociationLukas KathreinArndt LüderKristof MeixnerDietmar WinklerStefan Biffl

W Application Context

© Ripley Engineering https://flic.kr/p/9d4G84 https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode

- Industry Partner: Large-scale Austrian engineering company with focus on engineering and construction of highly automated and high-speed discrete manufacturing systems.
- Multi-disciplinary (mechanical, software, electrical engineering).
- Highly complex production lines.
- Design decision consist of a scope, possible and concrete outcomes as well as rationales.
- Example: "Fragile Product" Limited transportation speed as a parameter.

Context: Product – Process - Resource (PPR)¹

© Ripley Engineering https://flic.kr/p/9d4G84 https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode

[1] Schleipen, M., Lüder, A., Sauer, O., Flatt, H., & Jasperneite, J. (2015). Requirements and concept for plug-and-work

Related Work: Product & Process Modeling

Product modeling

- Focus on describing structures, assemblies and characteristics of products.
- Example solutions: Spread Sheet tools like MS Excel, Product Lifecycle Management Tools, House of Quality.

product process resource

Process modeling

- Focus on describing relations, processes, and assembling sequences.
- Example solutions: BPMN 2.0, Petri Nets.

Resource modeling

- Focus on describing the structure and behavior of a production system.
- Example Solutions: UML Class Diagrams.

Engineering Process based on VDI/VDE 3695²

Key Goals:

- Identify promising modeling approaches that combine PPR concepts.
- Understand modeling capabilities to support tracing design decisions.

[2] VDI 3695: Engineering of industrial Plants, Evaluation and Optimization, Beuth Verlag Std., 2009.

RQ1. What **modeling approaches** - in industrial informatics and in business informatics - **combine process, product and resource modeling**?

Approach:

- Following an adapted literature survey complemented with interviews with domain experts.
- Analysis of 45 Papers regarding modeling languages and requirements.

RQ2. What are **PPR modeling capabilities** and **limitations** of modeling approaches that **combine process, resource, and product modeling**, as foundation for **tracing design decisions**?

Approach:

Assessment of existing solutions against identified requirements.

RQ.1 - Results

• Elicited from literature and known or used by domain experts.

Observations:

- Most of the approaches focus on one/two aspects of PPR.
- Focus on processes: IDEF0, BPMN 2.0, eEPC, SysML-AD, Petri-Nets.
- Fundamental PPR Capabilities: Formal Process Description (FPD).
- Process descriptions for resources: Sequential Function Charts (SFC).

No "native" and visual PPR modeling approach.

RQ.2 – Results – Process Modeling Capabilities

 RQ.2: What are PPR modeling capabilities and limitations of modeling approaches that combine process, resource and product modeling as foundation for tracing design decisions?

• Which process modeling capabilities are needed?

- P1 Basic Workflow.
- P2 Logical operations (not present in FPD or IDEF0).
- P3 Meta-processes.
- P4 Tasks.
- P5 Comments (defined in BPMN but extensible for other approaches).
- P6 Organizational Responsibilities (Swimlanes available for BPMN and UML).

RO.2 – Results – Tracing of Design Decisions

Approach	A1: Product Assembly	A2: Process Modeling	A3: Resource modeling	B1: Hierarchy Modeling	B2: PPR Relations	B3: Consistency Expressions
		Criteria fo	or Tracing Des	sign Decisions	s with PPR.	
BPMN 2.0	Partially	Yes	Partially	Partially	Partially	No
eEPC	No	Yes	No	No	No	No
FPD	Yes	Yes	Yes	Partially	Yes	No
IDEF0	Partially	Yes	Partially	Partially	Partially	No
Petri nets	No	Yes	No	No	No	No
SFC	No	Yes	No	No	No	No
SySML-AD	Partially	Yes	No	Partially	Partially	No

RQ.2 – Results – Process Modeling Support

Approach	A1: Product Assembly	2: Process Modeling	A3: Resource modeling	B1: Hierarchy Modeling	B2: PPR Relations	B3: Consistency Expressions
		Criteria fo	Tracing Des	sign Decisions	s with PPR.	
BPMN 2.0	Partially	Yes	Partially	Partially	Partially	No
eEPC	No	Yes	No	No	No	No
FPD	Yes	Yes	Yes	Partially	Yes	No
IDEF0	Partially	Yes	Partially	Partially	Partially	No
Petri nets	No	Yes	No	No	No	No
SFC	No	Yes	No	No	No	No
SySML-AD	Partially	Yes	No	Partially	Partially	No

RQ.2 – Results – Consistency Checking Support

Approach	A1: Product Assembly	A2: Process Modeling	A3: Resource modeling	B1: Hierarchy Modeling	B2: PPR Relations	B3: Consistency Expressions	
		Criteria fo	or Tracing Des	ign Decisions	s with PPR.		
BPMN 2.0	Partially	Yes	Partially	Partially	Partially	No	
eEPC	No	Yes	No	No	No	No	
FPD	Yes	Yes	Yes	Partially	Yes	No	
IDEF0	Partially	Yes	Partially	Partially	Partially	No	
Petri nets	No	Yes	No	No	No	No	
SFC	No	Yes	No	No	No	No	
SySML-AD	Partially	Yes	No	Partially	Partially	No	

RQ.2 – Result – Formal Process Description

Approach	A1: Product Assembly	A2: Process Modeling	A3: Resource modeling	B1: Hierarchy Modeling	B2: PPR Relations	B3: Consistency Expressions
		Criteria fo	or Tracing Des	sign Decisions	s with PPR.	
BPMN 2.0	Partially	Yes	Partially	Partially	Partially	No
eEPC	No	Yes	No	No	No	No
FPD	Yes	Yes	Yes	Partially	Yes	No
IDEF0	Partially	res	Partially	Partially	Partially	No
Petri nets	No	Yes	No	No	No	No
SFC	No	Yes	No	No	No	No
SySML-AD	Partially	Yes	No	Partially	Partially	No

Summarized Results

RQ.1: Available modeling approaches to support PPR?

- Seven modeling approaches have been investigated.
- FPD supports basic PPR concepts that could be extended.
- However, no "native" and visual PPR modeling language.

RQ2. Capabilities and limitations for tracing design decisions based on PPR modeling capabilities?

- No modeling approach meets all identified requirements.
- In the evaluation context, FPD provides a promising starting point, however,
 - Need for extensions
 - Hierarchy modeling only implicitly possible.
- No approach allows modeling consistency expressions!

	Approach	All: Product Assembly	A2 Property Modeling	A3 Records modeling	B2 Alberta-Shy Modeling	82.998 Belathers	82 Consistency Esperations
	SPMN13	Partialla	-	Petialy	Farsily	Facture	- MA
	HPC		Br.	-	1	1	
<	190	944	We.	ba.	Percally	Tes .	
	(0690)	Percelle		Penaly	Partolly	hartally	
	Petrinets	-		-	-	-	-
	1PC	-	100		-	-	1
	1494.42	Partially	. 160		Parcelly	Pertoile	14

Eimitations, Conclusions, and Future Work

Limitations

- Focus on process-centered modeling.
- Focus on a selected set of modeling language approaches.
- Requirements definition driven by industry partner, i.e., they are domain specific.

Conclusion

- Domain experts depend on design decisions from earlier phases.
- Design decisions currently hard to trace throughout engineering roles and phases.
- Formal Process Descriptions (FPD) represent a promising starting point (including some limitations).

Future Work:

- Extend FPD for hierarchy and consistency modeling.
- Consideration of additional modeling approaches and requirements.
- Secure the engineering process for IPR concerns.

Lukas Kathrein Kristof Meixner

Arndt Lüder <u>Dietmar Winkler</u> Stefan Biffl

Christian Doppler Laboratory for Security and Quality Improvement in the Production System Lifecycle (CDL-SQI)

TU Wien Favoritenstraße 9-11, 1040 Vienna first.last@tuwien.ac.at