

Investigating the Performance of selected Data Storage Concepts for AutomationML Models

Kristof Meixner, <u>Dietmar Winkler</u>, Michael Wapp, Ronald Rosendahl, Stefan Biffl

Context

- Cyber-Physical Production Systems Engineering.
- Heterogeneous involved engineering disciplines and different engineering artifacts.
- Discipline-specific data formats.

Challenge

• Different artifact and data formats hinder efficient data exchange.

Well, there are some solution approaches ..

W Solution Approaches & Key Questions

Solution Approaches

- Engineering platforms for data exchange.
- Standardized data exchange formats, e.g., AutomationML.
- Shared data repository for storing common engineering data.

However ..

Key Questions:

- Which data storage concept should be used?
- How to evaluate data storage concepts?

Plant Planning Plant Planning Data Plant Shared Data Planner Mechanical Software Planning Automation Data Exchange & Mechanical Software Planning Data Data Storage Planning Data Shared Data Shared Data Software Mechanical Enginee Engineer Electrical Planning Electrical Planning Data Electrical Shared Data Engineer

Fig. Round-Trip-Engineering Process.

W AutomationML

Automation Markup Language (AML)

- Standardized engineering data exchange format.
- Based on XML and CAEX.
- Hierarchical structure.

Otto-von-Guencke-University A Building10 (Class Role Roomi45 [Class Role] ProductionLine (Class Role AutomationProject) A Platel (Class Role Unit) ProductionHardware (Class Role ContainsReferenceDesignation) ConveyorBelt Left | Class Role | Machine | Class Role Turntable | Class Role ConveyorBelt Right | Cless Composed_ConveyorBelt_twodirections_twoser (ii) ConveyorBelt short (Class Role) Side (Class Role) File ControlCabinet (Class Role ContainsReferenceDesignation) (A) [[] Composed_SoftPLC | Class Composed_SoftPLC Role | IT NetworkCard (AR APC) [Class NetworkCard (AR APC) Role] AML (USBCard (AR APC) (Class USBCard (AR APC) Role) IL PLCProgram (Class OPCUA-Example Role) POU_PlateBaseProgram (Class LogicInterface) ample . VAR_FbandW_belegt (Class VariableInterface • VAR_Fband1_belegt (Class VariableInterface) ... VAR_Drehen (Class VariableInterface) . VAR_Bohren (Class VariableInterface) . VAR_Fraesen (Class VariableInterface) Ś - VAR Zaehler (Class VariableInterface) . VAR_MatrialThickness { Class VariableInterface } . VAR_MaterialType [Class VariableInterface]

. VAR_ToolType [Gass VariableInterface]

OPCUA Server (Class Role OPCUA-Server)

Research Questions

RQ1: How can we evaluate storage approaches in AML context?

- Systematic evaluation of storage approaches (flexible exchange of data storages).
- Focus on an evaluation architecture for benchmarking purposes.

RQ2: What are the critical requirements for storing AML data?

- Test scenario definition for standardized benchmarks.
- Focus on scenarios, requirements, and use cases.
- Evaluation of selected data storages in AML context.

Basic AutomationML Characteristics

<AutomationML/>

- XML-based engineering data exchange format.
- Hierarchical structure of engineering data.
- Different semantic meanings of entities.
- Links and relationships between engineering data.

Database Selection

- BaseX XML-based Database
- Neo4J Graph-based Database

Results: Evaluation Architecture (RQ1)

W Evaluation Use Case (RQ2)

Basic Key Use Cases

 CRUD Operations: Create, Read, Update, Delete for each AML component
à 36 Use Cases.

No.	AML Component	Create	Read	Update	Delete	
1	InstanceHierarchy	C1	R1	U1	D1	
27	InterfaceClass	C2	R2	U2	D2	
7	InterfaceClassLib	C3	R3	U3	D3	
166	InternalElement	C4	R4	U4	D4	
198	RoleClass	C5	R5	U5	D5	
14	RoleClassLib	C6	R6	U6	D6	
53	SystemUnitClass	C7	R7	U7	D7	
3	SystemUnitClassLib	C8	R8	U8	D8	
1	AMLFile	C9	R9	U9	D9	

Reference AML File:

- Fig: Basic AML Aspects
- ~21k Lines of Code (Academic AML data set)

W Evaluation Results

Note: Logarithmic scale because individual values differ to a large extent $(log10(10^*x))$

- **BaseX:** Performs good for create, update and delete.
- Neo4J: Performs good for read.

Operation	Neo4J	BaseX		
Read				
Create				
Update				
Delete		O		

W Detailed Data & Limitations

C	
	Outstan Dopples Furschutgeprefischaft

	Create			Read		Update		Delete	
	Neo4J	BaseX	Т	Neo4J	BaseX	Neo4J	BaseX	Neo4J	BaseX
InstanceHierarchy	11259	220		9	26	10812	116	7	< 1
InterfaceClass	286	110		10	16	266	100	8	< 1
InterfaceClassLib	557	222		- 11	16	410	99	9	< 1
InternalElement	11961	154		4	< 1	10427	118	6	< 1
RoleClass	239	110		64	17	645	104	5	< 1
RoleClassLib	419	219		13	17	842	105	7	< 1
SystemUnitClass	1267	164		12	21	2662	104	7	< 1
SystemUnitClassLib	20955	232		13	29	37458	162	7	< 1
AMLFile	73495	103		28	53	90980	158	7	< 1

Quantiative Data in [ms]; average value of 10 test runs.

Selected Limitations

- Focus on 2 representative databases.
- Representative but Academic AML Data.
- Focus on execution time.

W Contributions & Future Work

Contributions of this paper:

- RQ1: Data Storage Evaluation Architecture.
- RQ2: Evaluation Use Cases / Test Data for Benchmarking Purposes.
- Evaluation of two representative data storage approaches.

Future Work:

- Address limitations.
- Include additional storage approaches.
- Extending test data set towards large-scale and/or industry data.

Kristof Meixner¹, <u>Dietmar Winkler</u>¹, Michael Wapp¹, Ronald Rosendahl², Stefan Biffl³

¹ **TU Wien, Institute of Information Systems Engineering, CDL SQI** Vienna, Austria <first.last>@tuwien.ac.at

² Otto-v-Guericke University

Magdeburg, Germany ronald.rosendahl@ovgu.de

³ TU Wien Inst. of Information Systems Engineering

Vienna, Austria stefan.biffl@tuwien.ac.at