

Using Model Scoping with Expected Model Elements to Support Software Model Inspections: Results of a Controlled Experiment

Carlos Gracioli Neto^{1,3}, Amadeu Anderlin Neto², Marcos Kalinowski², Daniel Cardoso Moraes de Oliveira³, Marta Sabou⁴, <u>Dietmar Winkler^{4,5}</u>, Stefan Biffl⁴

¹ Federal Institute of Education Science and Technology of Mato Grosso, Rondonópolis, Brazil

² Pontifical Catholic University of Rio de Janeiro, Brazil

³ Federal Fluminense University, Niterói, Brazil

⁴ TU Wien, Institute of Information Systems Engineering, Vienna, Austria

⁵ Christian Doppler Laboratory for Security and Quality Improvement in the Production System Life Cycle, Vienna, Austria.

> qse.ifs.tuwien.ac.at www.sqi.at dietmar.winkler@tuwien.ac.at

Motivation & Key Questions

Motivation and Application Context

- Traditional Software Inspection to identify defects in software engineering models.
- **§** Limitations for Large-scale software engineering models.
- Sected Model Elements (EMEs) and Model Scoping (remove unrelated parts).

Key Question

How to improve defect detection performance for large-scale engineering models with model scoping?

Goal of this presentation

- Seport on a controlled experiment with students using real industrial artifacts aiming to understand the impact of model scoping and model inspection effectiveness/efficiency.
- Inspection of UML class diagrams using Model Scoping with EMEs compared to traditional Software Inspection (without model scoping and EMEs).

Fig. Context of Model Inspection.

Software Model Inspections

- Software Inspection* is a well-established formal approach for efficient defect detection in early software development phases, e.g., during software design.
- **§** Model Scoping is generic and not restricted to a particular type of requirements.

1 Excopo de Médulo de Administração (MADM) o sala és de detectorogãe de Salares Garendal Imagado dijetes permitir que internações bisidas de car

- adaption in previous budges de solutionnes i univer versi adaption signales, partes que parte de soupear de la constante service i terrar tara constante en la constante service a la constante service a

Requisitos Funcionars (Recorte Real) RPS: Disbune delle pernisir que o Setor Operacional e o Setor Administrativo eletarem a

RTS. Do latebase devic primar que o baixo operaciones e o baixo indunesciaise estadem en runalenção de devinas portunales, deresção de extra estadem de latebase e abranção de careiras que o faitor Administrativo estuar en runal englido de careiras de casa (consulta, industio e administrativo estade en aconsolado).

encuento. BPA: Di autoriane deve permitir que o Setor Administrativa e o Setor Roseceiro eletuem a manutenção de impositos joznaulta, Indualio, atemplio e exclueito).

Does the model completely and correctly represent the specification?

Are there defects in the scoped model?

Fig. Cut-outs during Model Scoping (dashed rectangles).

Fig. Requirements Specification.

* Fagan ME, 1976, Design and code inspections to reduce errors in program development, IBM Systems Journal, 15(7): 182-211

Goal & Research Question

Based on the Goal-Question Metric (GQM)* approach:

Analyze	the inspection of UML class diagrams using Model Scoping with EMEs	
for the purpose of	characterization	
with respect to	inspection effectiveness & efficiency	
from the point of view of	f the information systems researcher	
in the context of	UML class diagram inspection based on a valid functional specification, conducted by novice inspectors, when compared to not using <i>Model Scoping with EMEs</i> .	

2

Research Question:

- Solution for Defect Detection be implemented?
- What is the impact of Model Scoping with EMEs on Software Inspection performance, i.e., effectiveness and efficiency?

*van Solingen R, Basili V, Caldiera G, Rombach HD, 2002, Goal Question Metric (GQM) Approach, In: Encyclopedia of Software Engineering

Model Scoping and Defect Detection Process with EMEs

Step A: Model Scoping with EMEs approach includes:

- 1. Define the types of EMEs, e.g., for UML Class Diagrams: classes, attributes, relations.
- 2. Identify list of relevant EMEs based on the selected part of the reference document.
- 3. Scope the model by removing model elements that are not in the list/scope of EMEs.

Step B: Defect Detection based on EMEs and the Scoped Reference Document:

- 1. Appearance: Is the EME represented in the model?
- 2. Correctness: Is the EME modeled correctly?
 - **à** Foundation for Identifying and Reporting Defects.

Empirical Study Approach and Study Design

- Controlled Experiment in class-room settings. Ş Evereine A ' Evereine **Comparison of Defect Detection Approaches** § Traditional (ad-hoc) inspection approach _ without any specific reading technique.
 - With / Without Model Scopes based on EMEs.
- § **Cross-Over Design with 2 Groups and 2 Exercises.**
 - Group 1: Ad-hoc without Model Scopes **a** Ad-hoc with Model Scopes.
 - Group 2: Ad-hoc with Model Scopes à Ad-hoc without Model Scopes.

Ş Study Schedule (3 days)

- Day 1: Preparation Consent Form and Characterization Questionnaire.
- Day 2: Training and 1st part of the experiment.
 - Tutorial & Training (15 min).
 - Execution of Exercise A with focus on four simple use cases (75 min).
- Day 3: Execution of Exercise B with focus on two complex use cases (75 min).

	- step one -	
Group 1	Ad-hoc	Model Scoping
Group 2	Model Scoping	Ad-hoc

Study Design Application Domain and Material

§ Application Domain

- Integrated administration system with 2 modules including
 - Simple Administrative Tasks (4 Tasks, Exercise A)
 e.g., maintaining company and customer data, tax information, and cost centers.
 - Complex Billing Tasks (2 Tasks, Exercise B)
 e.g., registering invoices for provided services; registering payments for invoices.

§ Inspection Artifacts

- Overview description; List of functional requirements; use case diagrams; and use case descriptions.
- Class diagram: 19 classes (full UML diagram) vs. 12 classes (scoped UML diagram) for the selected model scope.

§ Questionnaires

- Consent form and participant characterization (participant background).
- Qualitative Feedback following the Technology Acceptance Method (TAM)*.

*Turner M, Kitchenham B, Brereton P, 2010, Does the technology acceptance model predict actual use? A systematic literature review, Information and Software Technology, vol, 52: 463-479

Study Design Defects and Participants

§ Requirements Specification was considered to be correct.

§ Seeded Defects in the Class Diagram

- Overall 28 seeded defects.
- Different defect types: ambiguity, incorrect facts, omission, extraneous information, (and inconsistencies*).
- 7 typical defects per defect type at different severity levels.

§ Participants

- Overall 40 Participants in two experiment runs (32 + 8).
- Exact replication in the 2nd run.
- Randomized and balanced assignment to experiment groups.
- Background characterization to capture experience on (a) Software Development, (b) UML Modeling, and (c) Software Inspection.

	Group	ID	Software De-	UML	Software
	Group	ID	velopment	Models	Inspection
		P33	Н	Н	L
	1	P34	L	Н	L
	1	P35	М	М	L
		P36	Н	Н	М
	2	P37	Н	Н	М
		P38	Н	H	L
		P39	L	Н	L
		P40	М	Н	L

Study Design Variables and Hypothesis

Variables

- **§** Independent Variables:
 - Defect Detection approach applied, participant qualification.
- **§** Dependent Variables:
 - Effectiveness: Share of identified (true) defects and seeded defects.
 - Efficiency: Real defects per time interval (e.g., per hour).

Hypothesis:

- **§** H01: No difference regarding defect detection effectiveness when inspecting UML class diagrams with or without using *Model Scoping with EMEs*.
- **§** H02: No difference regarding defect detection efficiency when inspecting UML class diagrams with or without using *Model Scoping with EMEs*.

Statistical Evaluation

§ Descriptive Statistics, Hypothesis testing based on Mann-Whitney Test at 90%*.

*Dybå T, Kampenes VB, Sj Derg DIK, 2006, A systematic review of statistical power in Software Engineering experiments, Information and Software Technology 48 (8):745-755.

Results Defect Detection Effectiveness

§ Effectiveness:

10

True Defects Found / Seeded Defects.

§ Hypothesis Testing

- Mann-Whitney-Test (90%).
- p-value: 0.075 (s) for Exercise A.
- P-value: 0.001 (s) for Exercise B.
- Model Scoping Groups with EME guidance were significant more effective in both trials (exercise A and B).

Effectiveness	Exercise A (Simple)		Exercise B (Complex)	
	Ad-Hoc	Model-Scoping	Ad-Hoc	Model-Scoping
MEAN	0,3	0,4	0,3	0,5
SD	0,13	0,10	0,10	0,07

Higher Effectiveness for Defect Detection for Model Scoping Groups
 H01 must be rejected.

Results Defect Detection Efficiency

- **§** Efficiency:
 - Number of identified true defects per time interval (i.e., per hour).

§ Hypothesis Testing

- Mann-Whitney-Test (90%)
- p-value: 0.025 (s) for Exercise A
- p-value: 0.001 (s) for Exercise B
- § Model Scoping Groups with EMEs guidance Ad-hoc Model Scoping were significant more efficient in both trials (exercise A and B).

Efficiency	Exercise A (Simple)		Exercise B (Complex)	
	Ad-Hoc	Model-Scoping	Ad-Hoc	Model-Scoping
MEAN	8,6	10,6	7,4	11,5
SD	3,15	2,80	3,10	1,73

Higher Defect Detection Efficiency for Model Scoping Groups
 H02 must be rejected.

Ad-hoc

Model Scoping

Discussion & Threats to Validity

How to improve defect detection performance for large-scale engineering models with model scoping?

- In the study context the Model Scoping and Defect Detection Process
 - supported defect detection performance well,
 i.e., significantly improved defect detection effectiveness and efficiency.
- Model Scopes and guidance by EMEs (based on feedback questionnaire):
 - was perceived useful by participants.
 - decreased task complexity based subjective participant assessment.
 - Guidance with EMEs also supports defect detection.

Threats to validity

- Internal: individual inspection of participants (no communication allowed), review of the experimental material and pilot test runs of the experiment.
- **External:** focus on real-world artifacts (from an individual organization); students act as participants (we captured their experience prior to the study).
- Seeded according to experiences of researchers and practitioners.
- Source Conclusion: We removed outliers and applied statistical tests, proven in similar contexts.

Summary and Future Work

Summary

- S The Model Scoping and Defect Detection Process with EMEs consist of a
 - Model Scoping and
 - Defect Detection Process Step.
- Model Scoping can act as filter or view to focus on relevant model elements.
- Support for inspecting Large-Scale Engineering Models.
- **§** Promising results in the study context.

Future Work

- Further investigations to precisely estimate in which cases Model Scoping with EMEs would be (most) worthwhile the upfront investment.
- Seplicating the reported experiment on Model Scoping with EMEs, including other engineering model types in different contexts, to reinforce experimental evidence and improve external validity.

Using Model Scoping with Expected Model Elements to Support Software Model Inspections: Results of a Controlled Experiment

Carlos Gracioli Neto^{1,3}, Amadeu Anderlin Neto², Marcos Kalinowski², Daniel Cardoso Moraes de Oliveira³, Marta Sabou⁴, <u>Dietmar Winkler^{4,5}</u>, Stefan Biffl⁴

¹ Federal Institute of Education Science and Technology of Mato Grosso, Rondonópolis, Brazil

² Pontifical Catholic University of Rio de Janeiro, Brazil

³ Federal Fluminense University, Niterói, Brazil

⁴ TU Wien, Institute of Information Systems Engineering, Vienna, Austria

⁵ Christian Doppler Laboratory for Security and Quality Improvement in the Production System Life Cycle, Vienna, Austria.

> qse.ifs.tuwien.ac.at www.sqi.at dietmar.winkler@tuwien.ac.at