Using Model Scoping with Expected Model Elements to Support Software Model Inspections: Results of a Controlled Experiment

Carlos Gracioli Neto¹,³, Amadeu Anderlin Neto², Marcos Kalinowski², Daniel Cardoso Moraes de Oliveira³, Marta Sabou⁴, Dietmar Winkler⁴,⁵, Stefan Biffl⁴

¹ Federal Institute of Education Science and Technology of Mato Grosso, Rondonópolis, Brazil
² Pontifical Catholic University of Rio de Janeiro, Brazil
³ Federal Fluminense University, Niterói, Brazil
⁴ TU Wien, Institute of Information Systems Engineering, Vienna, Austria
⁵ Christian Doppler Laboratory for Security and Quality Improvement in the Production System Life Cycle, Vienna, Austria.

qse.ifs.tuwien.ac.at
www.sqi.at
dietmar.winkler@tuwien.ac.at
Motivation & Key Questions

Motivation and Application Context

♭ Traditional **Software Inspection** to identify defects in software engineering models.
♭ Limitations for **Large-scale** software engineering models.
♭ **Expected Model Elements (EMEs)** and **Model Scoping** (remove unrelated parts).

Key Question

♭ How to improve defect detection performance for large-scale engineering models with model scoping?

Goal of this presentation

♭ Report on a **controlled experiment** with students using real industrial artifacts aiming to understand the impact of model scoping and model inspection effectiveness/efficiency.
♭ Inspection of **UML class diagrams** using Model Scoping with EMEs compared to traditional Software Inspection (without model scoping and EMEs).
Software Model Inspections

Software Inspection* is a well-established formal approach for efficient defect detection in early software development phases, e.g., during software design.

Model Scoping is generic and not restricted to a particular type of requirements.

Does the model completely and correctly represent the specification?

Are there defects in the scoped model?

* Fagan ME, 1976, Design and code inspections to reduce errors in program development, IBM Systems Journal, 15(7): 182-211
Goal & Research Question

Based on the Goal-Question Metric (GQM)* approach:

| Analyze | the inspection of UML class diagrams using *Model Scoping with EMEs*
for the purpose of	characterization
with respect to	inspection effectiveness & efficiency
from the point of view of	the information systems researcher
in the context of	UML class diagram inspection based on a valid functional specification, conducted by novice inspectors, when compared to not using *Model Scoping with EMEs*

Research Question:

- How could a *Process for Model Scoping* based on *Expected Model Elements* as foundation for *Defect Detection* be implemented?
- What is the *impact* of Model Scoping with EMEs on Software Inspection performance, i.e., *effectiveness and efficiency*?

Model Scoping and Defect Detection Process with EMEs

Step A: Model Scoping with EMEs approach includes:
1. Define the types of EMEs, e.g., for UML Class Diagrams: classes, attributes, relations.
2. Identify list of relevant EMEs based on the selected part of the reference document.
3. Scope the model by removing model elements that are not in the list/scope of EMEs.

Step B: Defect Detection based on EMEs and the Scoped Reference Document:
1. Appearance: Is the EME represented in the model?
2. Correctness: Is the EME modeled correctly?
 † Foundation for Identifying and Reporting Defects.
Empirical Study
Approach and Study Design

- Controlled Experiment in class-room settings.
- Comparison of Defect Detection Approaches
 - Traditional (ad-hoc) inspection approach without any specific reading technique.
 - With / Without Model Scopes based on EMEs.
- Cross-Over Design with 2 Groups and 2 Exercises.
 - Group 1: Ad-hoc without Model Scopes ‡ Ad-hoc with Model Scopes.
 - Group 2: Ad-hoc with Model Scopes ‡ Ad-hoc without Model Scopes.
- Study Schedule (3 days)
 - Day 1: Preparation - Consent Form and Characterization Questionnaire.
 - Day 2: Training and 1st part of the experiment.
 - Tutorial & Training (15 min).
 - Execution of Exercise A with focus on four simple use cases (75 min).
 - Day 3: Execution of Exercise B with focus on two complex use cases (75 min).
Study Design
Application Domain and Material

Application Domain
- Integrated administration system with 2 modules including
 - **Simple Administrative Tasks (4 Tasks, Exercise A)**
 e.g., maintaining company and customer data, tax information, and cost centers.
 - **Complex Billing Tasks (2 Tasks, Exercise B)**
 e.g., registering invoices for provided services; registering payments for invoices.

Inspection Artifacts
- Overview description; List of functional requirements; use case diagrams; and use case descriptions.
- Class diagram: 19 classes (full UML diagram) vs. 12 classes (scoped UML diagram) for the selected model scope.

Questionnaires
- Consent form and participant characterization (participant background).
- Qualitative Feedback following the Technology Acceptance Method (TAM)*.

Study Design
Defects and Participants

Requirements Specification was considered to be correct.

Seeded Defects in the Class Diagram

- Overall 28 seeded defects.
- Different defect types: ambiguity, incorrect facts, omission, extraneous information, (and inconsistencies*).
- 7 typical defects per defect type at different severity levels.

Participants

- Overall 40 Participants in two experiment runs (32 + 8).
- Exact replication in the 2nd run.
- Randomized and balanced assignment to experiment groups.
- Background characterization to capture experience on (a) Software Development, (b) UML Modeling, and (c) Software Inspection.

* No seeded defects for inconsistencies

<table>
<thead>
<tr>
<th>Group</th>
<th>ID</th>
<th>Software Development</th>
<th>UML Models</th>
<th>Software Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P33</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>P34</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>P35</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>P36</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>P37</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>P38</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>P39</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>P40</td>
<td>M</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Fig. Example: Qualification of 2nd experiment run.
Study Design
Variables and Hypothesis

Variables

- **Independent Variables:**
 - Defect Detection approach applied, participant qualification.

- **Dependent Variables:**
 - **Effectiveness:** Share of identified (true) defects and seeded defects.
 - **Efficiency:** Real defects per time interval (e.g., per hour).

Hypothesis:

- **H01:** No difference regarding defect detection effectiveness when inspecting UML class diagrams with or without using *Model Scoping with EMEs*.

- **H02:** No difference regarding defect detection efficiency when inspecting UML class diagrams with or without using *Model Scoping with EMEs*.

Statistical Evaluation

- Descriptive Statistics, Hypothesis testing based on Mann-Whitney Test at 90%*.

Results
Defect Detection Effectiveness

Effectiveness:
- True Defects Found / Seeded Defects.

Hypothesis Testing
- Mann-Whitney-Test (90%).
- p-value: 0.075 (s) for Exercise A.
- P-value: 0.001 (s) for Exercise B.

Model Scoping Groups with EME guidance were significant more effective in both trials (exercise A and B).

<table>
<thead>
<tr>
<th>Effectiveness</th>
<th>Exercise A (Simple)</th>
<th>Exercise B (Complex)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ad-Hoc</td>
<td>Model-Scoping</td>
</tr>
<tr>
<td>MEAN</td>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td>SD</td>
<td>0,13</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Higher Effectiveness for Defect Detection for Model Scoping Groups
‡ H01 must be rejected.
Results
Defect Detection Efficiency

Efficiency:
- Number of identified true defects per time interval (i.e., per hour).

Hypothesis Testing
- Mann-Whitney-Test (90%)
- p-value: 0.025 (s) for Exercise A
- p-value: 0.001 (s) for Exercise B

Model Scoping Groups with EMEs guidance were significant more efficient in both trials (exercise A and B).

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Exercise A (Simple)</th>
<th>Exercise B (Complex)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ad-Hoc</td>
<td>Model-Scoping</td>
</tr>
<tr>
<td>MEAN</td>
<td>8,6</td>
<td>10,6</td>
</tr>
<tr>
<td>SD</td>
<td>3,15</td>
<td>2,80</td>
</tr>
</tbody>
</table>

Higher Defect Detection Efficiency for Model Scoping Groups
† H02 must be rejected.
Discussion & Threats to Validity

How to improve defect detection performance for large-scale engineering models with model scoping?

β In the study context the Model Scoping and Defect Detection Process
 – supported defect detection performance well, i.e., significantly improved defect detection effectiveness and efficiency.

β Model Scopes and guidance by EMEs (based on feedback questionnaire):
 – was perceived useful by participants.
 – decreased task complexity based subjective participant assessment.
 – Guidance with EMEs also supports defect detection.

Threats to validity

β Internal: individual inspection of participants (no communication allowed), review of the experimental material and pilot test runs of the experiment.

β External: focus on real-world artifacts (from an individual organization); students act as participants (we captured their experience prior to the study).

β Construct: we applied a cross-over design to isolate learning effects; defects were seeded according to experiences of researchers and practitioners.

β Conclusion: We removed outliers and applied statistical tests, proven in similar contexts.
Summary and Future Work

Summary

- The Model Scoping and Defect Detection Process with EMEs consist of a
 - Model Scoping and
 - Defect Detection Process Step.
- Model Scoping can act as filter or view to focus on relevant model elements.
- Support for inspecting Large-Scale Engineering Models.
- Promising results in the study context.

Future Work

- Further investigations to precisely estimate in which cases Model Scoping with EMEs would be (most) worthwhile the upfront investment.
- Replicating the reported experiment on Model Scoping with EMEs, including other engineering model types in different contexts, to reinforce experimental evidence and improve external validity.
Using Model Scoping with Expected Model Elements to Support Software Model Inspections: Results of a Controlled Experiment

Carlos Gracioli Neto¹,³, Amadeu Anderlin Neto², Marcos Kalinowski², Daniel Cardoso Moraes de Oliveira³, Marta Sabou⁴, Dietmar Winkler⁴,⁵, Stefan Biffl⁴

¹ Federal Institute of Education Science and Technology of Mato Grosso, Rondonópolis, Brazil
² Pontifical Catholic University of Rio de Janeiro, Brazil
³ Federal Fluminense University, Niterói, Brazil
⁴ TU Wien, Institute of Information Systems Engineering, Vienna, Austria
⁵ Christian Doppler Laboratory for Security and Quality Improvement in the Production System Life Cycle, Vienna, Austria.

qse.ifs.tuwien.ac.at
www.sqi.at
dietmar.winkler@tuwien.ac.at

Institute of Information Systems Engineering