

Towards an Experiment Line on Software Inspection with Human Computation

Stefan Biffl¹, Marcos Kalinowski², <u>Dietmar Winkler</u>^{1,3}

¹ TU Wien, Institute of Information Systems Engineering, Vienna, Austria

² Pontifical Catholic University of Rio de Janeiro, Brazil

³ Christian Doppler Laboratory for Security and Quality Improvement in the Production System Life Cycle, Vienna, Austria.

qse.ifs.tuwien.ac.at www.sqi.at dietmar.winkler@tuwien.ac.at

Motivation & Key Questions

Motivation and Application Context

- § Traditional Software Inspection to identify defects in design documents and models.
- § Limited resources for inspection processes.
- § Large-scale software engineering models.

Key questions

- § How to handle large-scale engineering models with limited resources in a human computation context?
- § How could an experiment line address variability for planning experiments?
- § What are the expected benefits of an experiment line?

Model Inspection

Goal of this presentation

- Software Inspection Process with Human Computation (Crowdsourcing Supported Inspection (CSI)).
- § Managing variability of a family of experiments in academic / industry environment.

2

Illustrative Example .. Starting point

Inspection Task

- Input: Reference document, e.g., requirements specifications.
- Task: Identify defects in (large-scale) models early, effective, and efficient.
- Output: True defects in the model.

Does the model completely and correctly represent the specification?

Are there defects in the model?

System EER Diagram Model

Requirements Specification

Traditional (Best-Practice) Inspection

Benefits:

- § Formal and structured process approach (five inspection phases) to identify defect early and efficient in engineering artifacts.
- § Well established and investigated process approach.
- § Guidelines and reading techniques support defect detection, e.g., perspectives or scenarios.

Limitations:

- § Typically (expensive) experts are part of the inspection team.
- § Limited resources (e.g., 2h of inspection) à for inspecting large-scale documents need for several inspection cycles and coordination.
- § Limited tool support.

Human Computation & Crowdsourcing

"The act of undertaking any external software engineering tasks by an undefined, potentially large group of online workers in an open call format." (Mao et al., 2016)

- § Crowdsourcing (CS) mechanism has been applied in software engineering planning and analysis, implementation, maintenance, and testing ..
- S .. but very limited in the area of Software Quality Assurance and Software Inspection.

K. Mao, L. Capra, M. Harman, Y. Jia. A survey of the use of crowdsourcing in software engineering. Journal of Systems and Software, 2016.

Institute of Information Systems Engineering

Research Questions

Objectives and Approach

- § Support of software inspection tasks with crowdsourcing techniques in context of a family of experiment.
- § Key Elements:
 - Splitting up inspection tasks into small pieces of work,
 - Distributing inspection work load to a crowd of workers and/or experts within an organization,
 - Providing tool support.
 - Variability model for (inspection) experiment planning.

Research Questions

- § RQ.1: How to handle large-scale engineering models with limited resources in a human computation context?
- § RQ.2: How could an experiment line address variability for planning experiments?
- § RQ.3: What are the expected benefits for such an experiment line?

Software Inspection with Human Computation

RQ.1: How to handle large-scale engineering models with limited resources in a human computation context?

1. Text Analysis:

§ Identification of Model Elements (i.e., Entities, Relationships, Attributes) that represent the building blocks of a model à foundation for defect detection.

2. Model Analysis (Defect Detection):

§ Based on ME, defect detection in the model under inspection à candidate defect reports by individual crowd workers.

3. Defect Validation ("Team Meeting"):

Validation of reported defects derived from previous model analysis tasks.
 à justified and validated defects by crowd workers.

/

Feature Model for Software Inspection with Human Computation

RQ.2: How could an experiment line address variability for planning experiments?

Study Setup and Design

Basic Study Design

- § Study Type: Controlled Experiment
- § CSI process vs. Traditional Best-Practice Inspection (control group) with cross-over design.
- >75 participants in academic course in 4 different experiment runs
- § Study Material:
 - Design Specification: 3 pages, 7 scenarios and 110 MEs.
 - EER Diagram: 9 entities, 13 relationships, 32 attributes; 33 seeded defects.
 - Questionnaires (experience and feedback), guidelines for task execution.
 - Tool: Crowdflower/Figure Eight ¹ application and configuration.

Study History

- § Four different experiment runs until today.
 - Fall 2016, spring 2017, fall 2017, spring 2018 (currently running).
- § Similar / slightly improved material: Reference Document (Scenarios), Inspection Artifact (EER Model), Experience Questionnaire, Feedback Questionnaires, Artefact Scale, Seeded Defects, Process for traditional (pen & paper inspection)
- § Implemented Variations:
 - Focus on CSI process improvement, scope, and tooling improvements

Experiment Runs:	Fall 2016	Spring 2017	Fall 2017	Spring 2018
Process Steps:	Task and	Scope Cross Over	Scope Cross O	ver Design
+ Text Analysis	TASK Ax	TASK Ax		-
+ Model Analysis	TASK Bx	TASK Bx	TASK A1	TASK B2
+ Defect Validation	-	-	TASK B1	TASK A2
Tooling:			Improved Task Assignment	ant and Data Collection
+ Text Analysis	free-text data collection free-text data collection		Improved Task Assignment and Data Collection for CSI Implementation	
	(Crowdflower)	(Crowdflower)		
+ Model Analysis	free-text data collection	free-text data collection	guided data collection	guided data collection
	(Crowdflower)	(Crowdflower)	(Crowdflower)	(Figure Eight)
+ Defect Validation	-	-	guided data collection	guided data collection
			(Crowdflower)	(Figure Eight)

Expected Benefits

RQ.3: What are the expected benefits for such an experiment line?

- § Support of strategically planning of a family of studies to facilitate the cooperation of research groups.
- § Supporting systematic reuse of experiment design and material.
- § Foundation for an aggregation strategy of experiment results (towards a Body of Knowledge).
- Integration of industry studies as integral part of the family of experiments based on a proven experiment setup.

Summary and Future Work

Summary

- § Improving traditional Software Inspection with Human Computation, i.e., Crowdsourcing Based Inspection (CSI).
- § Feature Models support planning empirical studies in academia and industry based on a stable study architecture.

Future Work

- § Along the planning of a family of empirical studies we will focus on:
 - Needs from candidate industry partners to improve defect detection within a defined context (Case Studies?).
 - Various model types, e.g., structural and behavior models in different domains.
 - Various model sizes towards large-scale software engineering models.

Thank you ...

Towards an Experiment Line on Software Inspection with Human Computation

Stefan Biffl¹, Marcos Kalinowski², <u>Dietmar Winkler</u>^{1,3}

¹ TU Wien, Institute of Information Systems Engineering, Vienna, Austria
 ² Pontifical Catholic University of Rio de Janeiro, Brazil
 ³ Christian Doppler Laboratory for Security and Quality Improvement in the Production System Life Cycle, Vienna, Austria.

qse.ifs.tuwien.ac.at/~winkler www.sqi.at Dietmar.Winkler@tuwien.ac.at