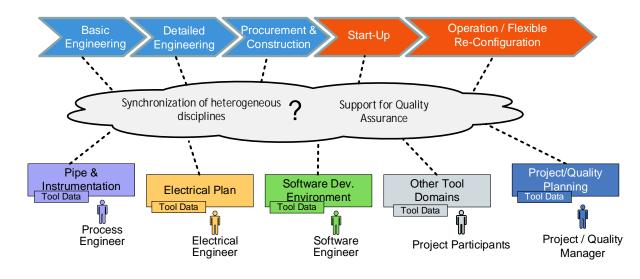


Focused Inspection to Support Defect Detection in Automation Systems Engineering Environments

Dietmar Winkler

Stefan Biffl


TU Vienna, Institute of Software Technology CDL-Flex, Austria

> dietmar.winker@tuwien.ac.at http://cdl.ifs.tuwien.ac.at

Context and Goals

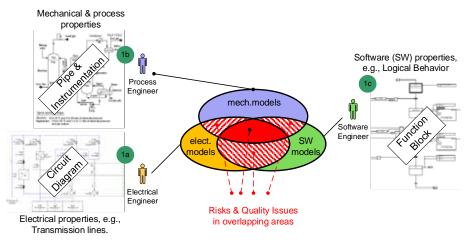
Context

- § Automation Systems Engineering Projects.
- Heterogeneous Disciplines in Distributed Engineering Environments.
- **§** Isolated tools and incompatible data models.

Goals

- Data synchronization mechanisms to improve engineering processes.
- Inspection support to improve product, process, and project quality.

Institute of Software Technology and Interactive Systems


2

Related Work & Research Issues

Related Work

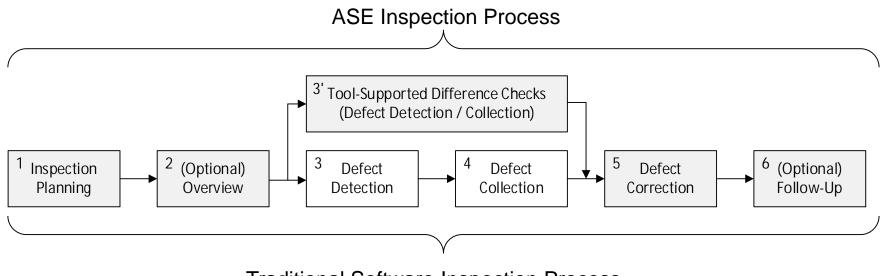
- **Engineering Service Bus**¹: Software Platform that closes the semantic gap between heterogeneous data models.
- **6 Common concepts**. Overlapping areas of involved disciplines.
- § (Software) Inspection is an established approach for early defect detection in Software Engineering.
- § Reading techniques support engineers in finding defects more effective and efficient, e.g., checklist based, perspective based, usage based, risk based reading.

Research Issues

- **§** How can we **support defect detection** in ASE Environments?
- **§** How can we show the **feasibility** of the adapted inspection approach in the ASE domain?

3¹ Engineering Service Bus: http://cdl.ifs.tuwien.ac.at

Solution Approach

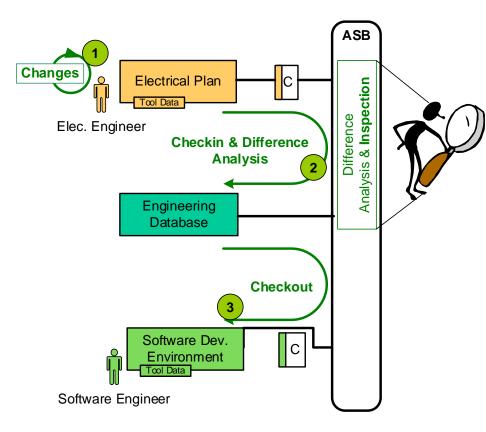


Common Concepts

§ Tool Supported Difference Checks of Changes based on Common Concepts.

Adapted ASE Inspection Approach

- Inspection planning based on project plan and synchronization strategy (1)
- 5 Tool-Supported Difference Checks (defect detection / collection) à merge view to focus on candidate defects and changes (3').
- **§** Defect correction based on notification of affected disciplines / engineers (5).


Traditional Software Inspection Process

Feasibility Study

Study Context

- § Real-world data from industry partner (i.e., Hydro Power Plant Project).
- S Change Management Process Approach:
 - 1. Changes provided by Electrical Engineers.
 - 2. Difference Analysis & Focused inspection.
 - 3. Checkout of synchronized Data Sets by Software Engineer.
- Initial Data Setup: 152 signals (individual data sets that identifies engineering entities).
- Inspection team: electrical, mechanical, software, and engineer (moderator of the inspection session).

Difference View on Updated Signals

- Solution New Testing Data Set (4 signals):
 - 3 new signals has been introduced.
 - 1 signal updated.
 - 151 signals removed.
- Set of changes (new, updated, removed signals) can be inspected by the inspection team.
 - Accept changes if change is acceptable (or false positive)
 - Reject changes if change is not acceptable (or agreed as defect)

C	neckboxes	to the left of the	he new va	lue in ord	er to update a propert	y.										
	w only con e all kee															
Cha	nge numbi	er of rows: 5	• •											dentified Deviations		
Ine	Update whole row		project	region	componentNumber	cpuNumber	channelName	rackid	position	kks0	₽ kks1	₽ kks2	¥ kks∄	✓ functionalDescription(longText)	status	Ƴ dp
	keep all	old value: new value:	project	001	007	20		05	position	3		GH001 CE112	xA22 xQ01 ∡	Unit 1 VT U1 U2 U3 not ok Unit 1 Feeder 380kV current phase L2		2041 04053 2

Benefits and Limitations

Benefits:

- § Based on inspection team participants (i.e., different disciplines), inspectors apply their individual viewpoints, i.e., comparable to perspective based reading.
- State-of-the-Practice (Manual) vs. tool-supported synchronization & Inspection.

	Manual*	ASB	Change
Individual Synchronization Effort (without inspection & discussion)	30min	5min	Effort Improvement (-83%)
Avg. Frequency of Synchronization	2 / month	20 / month	Frequency increased: factor 10
Analysis of Data	Days	Seconds	Significant improvement
Inspection and Discussion	-	-	comparable effort

Limitations:

- **§** No guidance for inspectors provided (implicitly given by participating roles).
- Small set of sample data (feasibility study)

7 *Estimated Reference Values derived from expert estimations,

Summary & Future Work

Summary

- Automation Systems Engineering Projects include various disciplines with heterogeneous tools and data models
 a need for synchronization support.
- Defects in different disciplines can have a critical impact on other disciplines
 a need for quality assurance support (e.g., by inspections)
- Integrated data (and common concepts) can help to
 - support synchronization of various disciplines
 - drive inspection processes based on (automatically) identified deviations.
- Feasibility study in the ASE domain, i.e., hydro power plant engineering showed benefits for improving process, project, and product quality.

Future Work

- **§** Towards guidance of individual inspectors (e.g., checklists, domain-specific guidelines).
- **§** Evaluation in larger industry settings to investigate performance and scalability.
- **§** Additional support of change analysis with semantic technologies.

Thank you ...

Focused Inspection to Support Defect Detection in Automation Systems Engineering Environments

Dietmar Winkler, Stefan Biffl

TU Vienna, Institute of Software Technology CDL-Flex, Austria

Dietmar.Winkler@tuwien.ac.at

Institute of Software Technology and Interactive Systems