

Engineering Process Improvement in Heterogeneous Multi-Disciplinary Environments with Defect Causal Analysis

Olga Kovalenko¹ <u>Dietmar Winkler</u>¹ Marcos Kalinowski² Estefania Serral³ Stefan Biffl¹

¹TU Vienna, Institute of Software Technology, CDL-Flex, Austria ²Federal University of Juiz de Fora, Brazil ³KU Leuven, Belgium

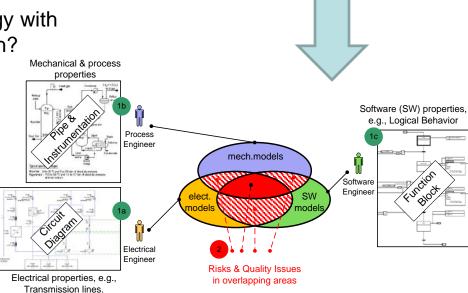
http://cdl.ifs.tuwien.ac.at

Motivation & Goals

Motivation:

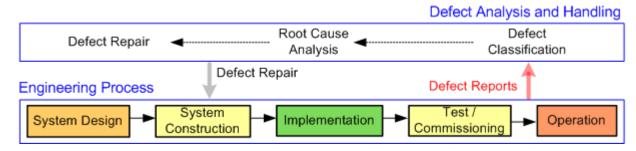
- Heterogeneous and Multi-Disciplinary Engineering (ME) Environments.
- Defects and root causes are hard to find (even across disciplines)

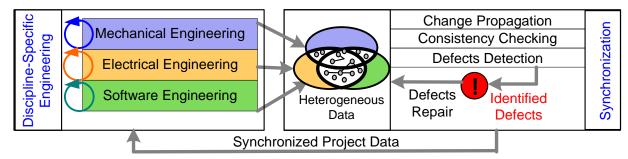
Key research questions focus on:


- How to support stakeholders in efficiently find root causes of defects for future defect prevention?
- How to implement an improvement strategy with the defect causal analysis (DCA) approach?

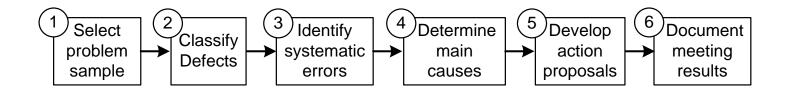
Goals of the paper:

- Adapted DCA Approach & Evaluation
- Improvement strategy with DCA




Engineering Process Data in ME Projects

- Goals in ME Projects:
 - Consistent and stable engineering data in related disciplines.
 - Early defect detection and repair.
 - Defect prevention for future projects based on defect causes.
- Traditional and Sequential Engineering Process (derived from our industry partner)


(Manual) Synchronization in Multi-Disciplinary Engineering Environments

Defect Causal Analysis (DCA)

DCA has been successfully applied in Software Engineering*.

- Systematic Process Improvement based on DCA
 - Expert Workshop involving different stakeholder.
 - Starting Point: Identified (critical) defects.
 - Goal: Identifying root causes for defect repair and prevention.

- Defect Classification Schemes
 - Set of attributes that describe a defect, e.g., defined by IEEE, IBM, or HP.
 - Focus on Software Engineering → need for extension for multi-disciplinary and heterogeneous engineering projects.

*Kalinowski M., Card D.N., Travassos G.H.: "Evidence-based guidelines to defect causal analysis", IEEE Software 29(4), pp16-18, 2012.

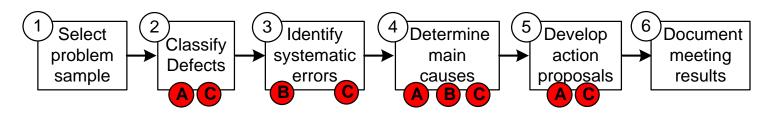
Research Questions & Solution Approach

Research questions include

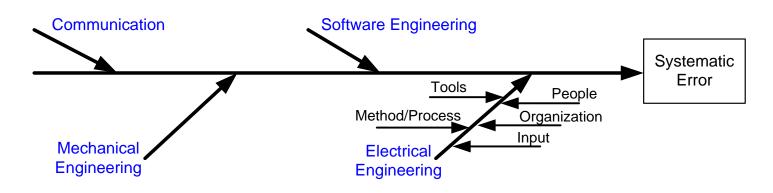
- How to adapt the DCA process to the context of ME projects?
- How to adapt a defect classification (DC) scheme to the context of ME projects?

Solution Approach

- Adaptation of the DCA process approach and ...
- ... extension of the defect classification scheme ...
- ... to address multi-disciplinary engineering projects in heterogeneous environments.


Feasibility Study

- Initial feasibility study at our industry partner to address most critical root causes based on DCA findings.
- Implementation of improvement actions to address root causes.
- Second study for evaluation of implemented measures.


Adapted DCA Process

Basic Process Steps are similar!

- Adaptation focus on characteristics of multi-disciplinary engineering projects:
 - Different (involved) engineering disciplines (A).
 - Heterogeneous artifacts and data (B).
 - Inter-disciplinary dependencies in project data (C).
- \rightarrow Adapted Ishikawa diagram*:

6 *Ishikawa K.: "Guide to Quality Control", Asian Productivity Organization Press, 1986.

Defect Classification Scheme

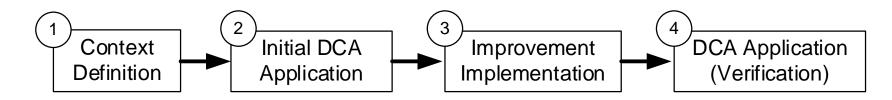
Defect Classification (DC) scheme for DCA must cover*:

- Defect insertion \rightarrow to identify the cause of the defect (1).
- Defect detection \rightarrow to identify a strategy for defect detection method improvement (2).
- Defect type (i.e., nature of defect) \rightarrow supporting information for both (1) and (2).

Adapted DC scheme based on IEEE consists of 7 attributes:

Insertion Context	Detection Context	Impact	Current Status within
 Discipline 	 Discipline 	Rating	Defect Life Cycle
 Artifact Type 	 Artifact Type 	Ū	
 Artifact 	Artifact	 Priority to fix 	Defect Type
 Activity 	 Activity 	 Severity (risk) 	Defect Mode
 Project Phase 	 Project Phase 	• • •	

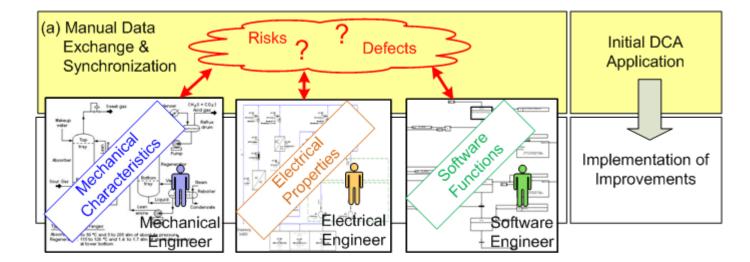
Different (involved) engineering disciplines (A) Heterogeneous artifacts and data (B) Inter-disciplinary dependencies in project data (C)


* Kalinowski M., Card D.N., Travassos G.H.: "Evidence-based guidelines to defect causal analysis", IEEE Software 29(4), 2012.

Feasibility Study

Study Process Summary

Feasibility study in 4 steps to evaluate the adapted DCA process.

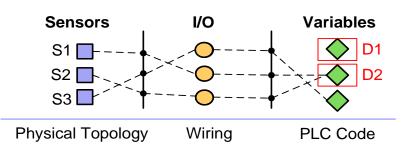


- Context Definition and Study Planning (1)
- DCA Workshops (2) and (4)
 - Involving key stakeholders from our industry partner
 - Focus on the most critical defects.
- Lessons Learned: Identification of an improvement strategy (3)

Context Definition Feasibility Study

Context

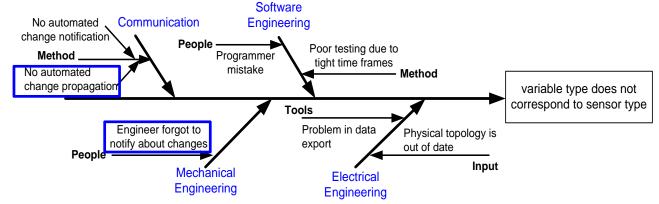
- Automation Systems Development Projects, e.g., Hydro Power Plants.
- Involvement of various disciplines, e.g., mechanical, electrical, and software engineering.
- Isolated tools and data models are not or loosely connected.



9

Inconsistent Project and Engineering Data.Occur in the End-To-End Test.

Initial DCA Application Feasibility Study

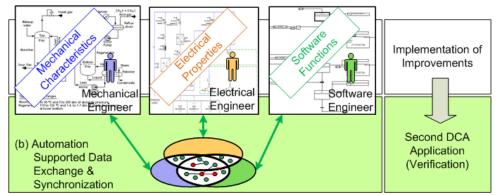


Root Cause Analysis

Core Defects and Errors

- Lack in interoperability of data models and data.
- No automation supported change propagation/notification

Proposed Solution (Lessons Learned)


Tool-Supported synchronization based on semantic technologies with the ASB*.

Improvement and Second DCA Application Feasibility Study

Implemented Improvements

- Synchronization of heterogeneous data models based on common concepts.
- Automated Change propagation / notification → consistent project and engineering data.

However ... (the results of the second DCA application)

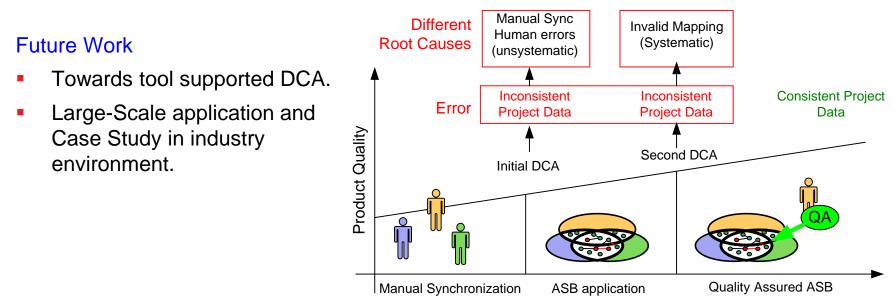
- Data Model Transformation must be stable and correct.
- Incorrect transformation rules might lead to (systematic) mapping errors but they are easier to handle.

Systematic Error (identified in a second DCA cycle)

 Inconsistent engineering data due to incorrect transformations (model transformation errors)

Improvement Options

11


Additional Quality Assurance Step to verify/validate model transformation.

Summary & Future Work

Summary

- Multi-Disciplinary Engineering Projects include additional risks due to distributed and heterogeneous data models that have to be synchronized manually
- DCA enables the identification of root causes of a certain set of defects systematically.
- However DCA and Defect Classification approaches, applied in Software Engineering must be adapted to meet ME projects.
- A sequence of DCA applications can lead to an improvement strategy applicable in ME domains.

Engineering Process Improvement in Heterogeneous Multi-Disciplinary Environments with Defect Causal Analysis

Olga Kovalenko¹, Dietmar Winkler¹, Marcos Kalinowski², Estefania Serral³, Stefan Biffl¹

¹TU Vienna, Institute of Software Technology, CDL-Flex, Austria ²Federal University of Juiz de Fora, Brazil ³KU Leuven, Belgium

Dietmar.Winkler@tuwien.ac.at