
. Institute of Software Technology and Interactive Systems

Evaluating Software Architecture using Ontologies for
Storing and Versioning of Engineering Data in

Heterogeneous Systems Engineering Environments

Richard Mordinyi Estefania Serral Dietmar Winkler Stefan Biffl

Vienna University of Technology
Institute of Software Technology, CDL-Flex, Austria

http://cdl.ifs.tuwien.ac.at

. Institute of Software Technology and Interactive Systems

Motivation & Goals

Motivation:
 Large-Scale Engineering Projects, e.g., hydro power

plants, car manufacturing plants, steal mills.
 Cooperation of different engineering disciplines.
 Disciplines have specific engineering tools.
 Manual effort required for data exchange and

synchronization (high risks).

Key research questions focus on:
 How to enable efficient data exchange across disciplines?
 How to provide storage mechanisms to support

efficient data access?

Goals of the paper:
 Overcoming technical and semantic gaps in

large-scale engineering projects.
 Evaluation of storage mechanism for efficient data access.

2

. Institute of Software Technology and Interactive Systems

Engineering Process and Changes

1. Sequential Engineering Processes and Changes.
2. Frequent Synchronization of heterogeneous and distributed disciplines.
3. Overcoming technical gaps of tools and semantic gaps of data models.

 Common Concepts and the Engineering Knowledge-Base (EKB) are the foundation
effective and efficient data exchange between disciplines.

3

. Institute of Software Technology and Interactive Systems

EKB Concepts for Data Mapping

 Common data elements to link distributed and heterogeneous (local) data models.
 Local tool concepts vs. common data elements between two or more disciplines.
 Engineering Knowledge Base (EKB) holds common concepts and enables data

integration based on semantic technologies.

 Question: How could (versions of) data elements be stored efficiently and effectively?
4

. Institute of Software Technology and Interactive Systems

Related Work and Research Issues

 Ontology file storage
 XML-based semantic files, the ontology and its data instances are stored together

and loaded into memory.
 Examples: Jena, Sesame, Oracle 11g.

 Triple storage
 Subject-predicate-object expressions in ontology languages, stored in specific data

bases. Examples: Jena TDB, Bigdata.

 Relational data bases
 Ontology storage manages concepts but individuals are stored a data base.

Transformation of SPARQL queries to database queries; Examples D2RQ, Quest.

 Current evaluation studies do not include data integration scenarios.

Research Issues:
 RI-1: Data Management: Performance of storages according to insert, update, and delete

operations of EKB data elements in an integration environment.

 RI-2: Data Analysis: Performance of storages according to querying operations to
analyze historical data (and versions), e.g., the number of changes over time or the
change history of one component.5

. Institute of Software Technology and Interactive Systems

Candidate Architectures (1)

Variant A: Ontology-Based Storage
 Single ontology storage

– Holds ontology concepts and
instances in one single ontology.

– Ontology storage: SESAME API.
– SPARQL for transformations and

queries.
 Versioning

– Change set vocabulary.

Variant B: RDB2RDF Mapper
 Ontology Component

– Stores and manages concepts.
 Relational Database

– Stores and manages versioned
individuals.

– Reflects ontology models.
 Versioning modelled in the ontology

6

. Institute of Software Technology and Interactive Systems

Candidate Architectures (2)

Variant C: Versioning System
 Ontology component

– stores and manages concepts.
 Versioning System, e.g., GIT

– Full versioning capabilities.
– Stores and manages versioned

individuals.

 Local Concept Repositories
– Each concept in one repository.
– Each individual one turtle file.

 Querying RDF with Apache Jena ARQ

 Question: How do the different architecture variants perform?
7

. Institute of Software Technology and Interactive Systems

Evaluation Use Case

Goal and Context
 Investigate the performance of different architecture variants.
 Application Context: Control of a Steel Mill – 6 million data points with PLC engineering

tools

Involved Tools / Data Models
 Electrical plan
 Mechanical plan
 PLC Code

Evaluation Scenarios
 Scenario 1: Data Insertion in the Local Tool Ontologies
 constant number of data elements.

 Scenario 2: Data transformation with increasing project size
 increasing number of data elements, comparable to real world settings.

 Scenario 3: Historical Data Analysis Capabilities (for Scenario 1 and 2).

8

. Institute of Software Technology and Interactive Systems

Data Insertion in the Local Tool Ontologies
Evaluation Scenario 1
 Focus on Data Management Performance.
 Behavior of the architecture with respect to the operation types,

i.e., insert, update, and delete.
 Fixed amount of data records in the system (i.e., 1 Mio data sets).
 Changing the share of add/delete/remove over time, i.e., per commit.

9

. Institute of Software Technology and Interactive Systems

Data Insertion in the Local Tool Ontologies
Evaluation Scenario 1 – Results (1/2)
Variant A: Ontology-Based Approach
 Fluctuations in time independent of the

executed operations.
 Commit 9 ended in a fatal error caused by

the JRE.
 Tools & Storage Approaches: Bigdata

version 1.2.3, Sesame Native store v2.6.3

Variant B: Mapper-Based Approach
 Continuously linear behavior with respect to

the changing amount of operations.
 Deleting/updating requires notable more

time than inserting.
 Overall execution time 4 to 5 times less.
 Tools and Storage Approaches: D2RQ

version 0.8.1, mysql 5.5

10

. Institute of Software Technology and Interactive Systems

Data Insertion in the Local Tool Ontologies
Evaluation Scenario 1 – Results (2/2)

Variant C: GIT-Based Approach
 Measured push-command effort.
 Almost continuously constant execution

time.
 Each commit always has to cope with one

million files (including versioning
information).

 Large amount of files stresses file system.
 Tools and Storage Approaches: Git,

Apache Jena ARQ 2.11.0

Summary of Evaluation Scenario 1
 Ontology-Based approach crashed due to resource limits.
 Mapper-Based approach required a constant execution time for handling a constant

amount of 1 Mio Data Sets.
 GIT-Based approach require more time because of file system handling and version

control, no separation of different operations.

11

. Institute of Software Technology and Interactive Systems

Evaluation Scenario 2:
Data Transformation with Increasing Project Size
 Focus on increasing number of elements comparable to real-world projects (add and

update operations).
 Each commit adds new data; Starts with 100.000; Ends at commit 13 with ~1 million

data records

Sequence of Commits Variant A: Ontology-Based Approach

Variant B: Mapper-Based Approach Variant C: GIT-Based Approach
12

. Institute of Software Technology and Interactive Systems

Evaluation Scenarios 1&2
Resource Consumption

Hardware Constraints
 Intel® Core™ i7-3537U Processor 2 GHz, 10 GB RAM, and 256 GB SSD harddisk
 Non-distributed environment
 Ubuntu 12.04 64bit, OpenJDK 64bit JRE 7.0_25
 java heap size of 8 GB RAM

Ontology-Based Mapper-Based Git-Based
Memory Consumption

Scenario 1 5 700 MB 150 MB < 290 MB
Scenario 2 4 600 MB 150 MB < 148 MB

Disk usage (# Files)

Scenario 1 700 Mio. Triples
~ 50 GB

5 GB 40 GB

Scenario 2
103 Mio. Triples

~ 6 GB 352 MB 4 GB

13

. Institute of Software Technology and Interactive Systems

Evaluation Scenario 3:
Querying of Data Elements
 Important issue to get (aggregated) information out

of the system.

Queries for Evaluation:
 Query 1: “What is the number of changes,

deletions, and insertions during the project?”
 Query 2: “What is the number of changes,

deletions, and insertions when comparing two
specific weeks?”

 Query 3: “Which components have been added,
changed, or deleted on a weekly basis during the
project?”

 Query 4: “Which sub-components of a specific
component have been added, changed, or deleted
on a week basis during the project?”

 Query 5: “How often has a specific common
concept been updated during the project?”

 Query 6: “How often has a specific component
been changed on a week basis during the
project?”14

. Institute of Software Technology and Interactive Systems

Evaluation Scenario 3:
Storage Performance for Querying
 Performance measurement after every commit for

scenario 1 with a constant number of data
elements (similar observations for scenario 2).

 Depending on the query complexity and the
amount of involved data sets the effort or
information could increase.

Ontology-Based Approach (Search):
 Query 2 and 5: specific focus that allows to limit

the data to be analyzed beforehand.
 Query 1 is the slowest because the entire data set

has to be analyzed (logarithmic y-axis scale!)

Mapper-Based Approach (Search):
 Query 1 needs most of the time to analyze the

entire data set and execute string comparison
operations.

GIT-Based Approach (Search):
 Query 1 and 6 require more time focus on the

entire data set (and file system)

Variant A: Ontology-Based Approach

Variant B: Mapper-Based Approach

Variant C: GIT-Based Approach
15

. Institute of Software Technology and Interactive Systems

Summary and Future Work

 Future work
– Add more complex data models and relationships.
– Involvement of commercial implementations.
– Investigation of Non-SQL storage systems.

 Integrating heterogeneous disciplines and data models require efficient semantic
approaches for data management and querying.

 Evaluation of three software architectures using ontologies
– Ontology-based for small data models / projects.
– RDB2RDF Mapper-based for large data models and sets.
– Versioning System-based for supporting complex engineering processes.

Advantages Disadvantages
Ontology-based + Simple architecture + slow query execution times

+ Higher complexity in application
+ mapping configuration requires
 manual adaptations
+ model adaptations

+ well-established versioning system + High architectural complexity

+ track of changes
+ Performance strongly depends on
 the file system

Mapper-based
+ Relational databases are well
 researched and widely used

Git-based

16

. Institute of Software Technology and Interactive Systems

Thank you ...

Evaluating Software Architectures using Ontologies
for Storing and Versioning of Engineering Data in

Heterogeneous Systems Engineering Environments
Richard Mordinyi, Estefania Serral, Dietmar Winkler, Stefan Biffl

Vienna University of Technology
Institute of Software Technology, CDL-Flex, Austria

Dietmar.Winkler@tuwien.ac.at

	Evaluating Software Architecture using Ontologies for Storing and Versioning of Engineering Data in Heterogeneous Systems Engineering Environments
	Motivation & Goals
	Engineering Process and Changes
	EKB Concepts for Data Mapping
	Related Work and Research Issues
	Candidate Architectures (1)
	Candidate Architectures (2)
	Evaluation Use Case
	Data Insertion in the Local Tool Ontologies�Evaluation Scenario 1�
	Data Insertion in the Local Tool Ontologies�Evaluation Scenario 1 – Results (1/2)
	Data Insertion in the Local Tool Ontologies�Evaluation Scenario 1 – Results (2/2)
	Evaluation Scenario 2: �Data Transformation with Increasing Project Size
	Evaluation Scenarios 1&2�Resource Consumption
	Evaluation Scenario 3: �Querying of Data Elements
	Evaluation Scenario 3: �Storage Performance for Querying
	Summary and Future Work
	Thank you ...

