
Improving Unfamiliar Code with Unit-Tests:

An Empirical Investigation on

Tool-Supported and Human-Based Testing Tool-Supported and Human-Based Testing

Dietmar Winkler1 Martina Schmidt1 Rudolf Ramler2 Stefan Biffl1

1Vienna University of Technology

Institute of Software Technology, Christian Doppler Laboratory

. Institute of Software Technology and Interactive Systems

Institute of Software Technology, Christian Doppler Laboratory

“Software Engineering Integration for Flexible Automation Systems”

2Software Competence Center Hagenberg

dietmar.winkler@tuwien.ac.at

http://qse.ifs.tuwien.ac.at/~winkler

Motivation & Goals

Motivation

� Software testing is a well-established quality assurance approach to

introduce unit tests on different levels during software development projects.

� Existing software solutions often suffer from a lack of unit tests due time � Existing software solutions often suffer from a lack of unit tests due time

restrictions and/or resource limitations.

� A lack of unit tests can hinder effective and efficient maintenance processes.

Goals:

� Introducing unit tests after deployment is a promising approach for

(a) Enabling systematic and automation-supported tests after deployment.

(b) Increasing product quality significantly.

. Institute of Software Technology and Interactive Systems

(b) Increasing product quality significantly.

Key research questions focus on:

� How to introduce test cases in “old” and even “unknown code”? Manually by

experts? Supported by tools?

2

Test-First & Test-Last Test Strategies

� Test-First Development (based on agile concepts)

– Defining test cases prior to software construction.

� Test-Last Development (traditional software processes)

– Writing/execution tests after the construction phase.– Writing/execution tests after the construction phase.

. Institute of Software Technology and Interactive Systems3

Human-Based & Tool-Supported Testing

� Changing product requirements, enhancements, and evolution of software

products could require testing after deployment.

� New and missing test cases need to be (re-)written to ensure proper

maintenance � “Test Last Approach”maintenance � “Test Last Approach”

Strategies to introduce test cases after deployment

� Human-Based Test Case Construction (manually)

� Introducing test cases manually.

� Requires deep understanding of requirements and source code.

� Additional effort when creating test cases.

. Institute of Software Technology and Interactive Systems4

� Tool-Supported Random Test Case Generation (automation supported)

� Automated generation of test cases.

� Based on specification, models, or source code.

� Additional effort required when integrating tests.

Research Questions & Experiment Setup

Research Questions focus on

� Defect Detection Effectiveness (EFF)

� False Positives (FP)

� Method Coverage (MC)� Method Coverage (MC)

Controlled Experiment with seeded defects.

� Subjects: 48 human participants (master students with software

engineering & testing background) vs. Randoop.

� Time duration: 60 min for human participants and 2 min for Randoop.

� Study Material consists of Java Collection Classes

� Software package with 2800 LOCs, 34 interfaces and classes,

. Institute of Software Technology and Interactive Systems5

� Software package with 2800 LOCs, 34 interfaces and classes,

164 methods.

� Javadoc API and class files were provided to force black box testing.

� 35 seeded defects with 4 defect classifications: algorithm,

assignment, checking, and data defects.

� Supporting material: experience and feedback questionnaire.

Experiment Process

� Study preparation: study material, Randoop configuration, briefing.

� Study execution:

Session 1 (human-based test case construction) and

Session 2 (tool-supported test case generation with Randoop).Session 2 (tool-supported test case generation with Randoop).

Communication

Link
TaximoduleDriver Central Operator

Taxi Central

. Institute of Software Technology and Interactive Systems

� Data submission and evaluation.

6

Limitiations

Internal validity

� Experts reviewed the material and experiment package (Reuse of proven

experiment package)

� Avoidance of communication between participants during the study execution.

� Experience questionnaire to capture the skills of the participants.� Experience questionnaire to capture the skills of the participants.

� Classroom setting to monitor and control study variables.

External validity

� Limitation of human-based testing effort(1 hour of test case generation)

� Well-known study objects to avoid domain-specific interpretation problems.

� Participants are semi-professionals in the field of software testing.

. Institute of Software Technology and Interactive Systems7

Construct validity

� The study is based on related work and previous experiments and addresses

common variables in empirical studies.

Conclusion validity

� Application of Statistical Testing

Results: Effort and Delivered Test Cases

Effort

� The effort does not include the individual preparation duration (i.e., 15 min

briefing) and the tool configuration effort (i.e., 2 hours).

Study Effort [min]

Reported/Generated Test Cases

� Tool-supported test case generation delivered far more test cases than

humans-based testing.

Test Strategy
Study Effort [min]

No. Min. Max. Mean SD

Randoop

Participants

1

48

2 min

52 min

2 min

68 min

2 min

59 min

0 min

2 min

. Institute of Software Technology and Interactive Systems8

humans-based testing.

Test Strategy
Delivered Test Cases

No. Min. Max. Mean SD

Randoop

Participants

1

48

5368

1

5368

92

5368

27.1

0

21.23

Results: Defect Detection Effectiveness

� Defect Detection Capability

� Expectation: Advantages for Randoop.

� Effectiveness: Share of identified defects

and seeded defects.and seeded defects.

� Results:

� No significant differences (p: 0.082(-))

for all defect classes.

� Significant differences for

algorithm (p-value: 0.041(s)) and

checking (p-value: 0.041(s)) defects.

. Institute of Software Technology and Interactive Systems9

Identified Defects (Matched Defects) Effectiveness [%]

Randoop Participants Randoop Participants

Minimum 9 0 25.7% 0%

Maximum 9 9 25.7% 25.7%

Mean 9 3.7 25.7% 10.6%

SD 0 2.68 0.0% 7.66

Results: False Positives (FP)

� Expectations: Tool-supported

testing reports more false

positives than human-based

testing.

Randoop

� No significant differences

– On average participants

(30.4%) deliver a fewer

number of false positives

than Randoop (47.1%).

� Possible explanation

– Participants have additional knowledge (i.e., context, requirements and

. Institute of Software Technology and Interactive Systems

– Participants have additional knowledge (i.e., context, requirements and

design specification).

– Participants with 0% FP either had enough experience to avoid them or

did not report many tests at all.

– Participants with 100% FP did not write many proper tests.

10

Results: Method Coverage

� Expectations: Tool-supported

testing achieves a higher

method coverage than human-

based testing.

Randoop

� Significant advantage for

Randoop (p-value: 0.041(s)).

� Randoop enables testing of all

public classes; time limitations

for human participants.

. Institute of Software Technology and Interactive Systems11

Test Strategy

Number of Covered Methods Method Coverage [%]

P-ValueNo

.

Min. Max. Mean SD Min Max Mean SD

Randoop 1 115 115 115 0.0 70 70 70 0.0
0.041(s)

Participants 48 8 101 48.1 22.89 5 62 29.3 13.96

Summary and Further Work

Summary

� Existing software solutions often suffer from a lack of unit tests due time

restrictions and/or resource limitations.

� The question is whether tests cases can be introduced into old and unknown � The question is whether tests cases can be introduced into old and unknown

code manually by experts or automation supported by tools.

� Main results:

� Different testing approaches support various defect classes.

� Application of domain knowledge and context information by humans.

� High number of test cases by Randoop.

� A mix of the testing strategies should be chosen in order to receive the

unified benefits of both.

. Institute of Software Technology and Interactive Systems

Further Work

� More detailed investigation of participants test cases and test case quality.

� Investigation of tester qualification focusing on written test cases and defect

detection capability.

� Alternative configurations of Randoop (Optimization).

12

Thank you ...

Improving Unfamiliar Code with Unit-Tests: An Empirical

Investigation on Tool-Supported and Human-Based Testing

Dietmar Winkler1, Martina Schmidt1, Rudolf Ramler2, Stefan Biffl1

1Vienna University of Technology

. Institute of Software Technology and Interactive Systems

1Vienna University of Technology

Institute of Software Technology, Christian Doppler Laboratory

“Software Engineering Integration for Flexible Automation Systems” (CDL-Flex)

2Software Competence Center Hagenberg

Dietmar.Winkler@tuwien.ac.at

