## Version Management and Conflict Detection across Tools in a (Software+) Engineering Environment

Florian Waltersdorfer **Thomas Moser Dietmar Winkler** Stefan Biffl Christian Doppler Laboratory CDL-Flex Institute of Software Technology and Interactive Systems (ISIS) Vienna University of Technology http://cdl.ifs.tuwien.ac.at Tool Mec. SCADA Model Mec. Tech. Interop. Tool Elec. Analysis **Tool SW** Workflow





### **Context and Motivation**



- Automation systems engineering projects
  - Contributions from several engineering disciplines.
  - Complex artifacts like mechanical, electrical, and software components and plans, which get updated concurrently.



- Version Management
  - Available for each individual engineering discipline.
  - Very little work on version management across semantically heterogeneous data models in engineering tools and projects.
- Quality Assurance (Change & Conflict Detection)
  - Selective QA activities in individual disciplines.
  - Challenge is to integrate quality assurance activities across disciplines and systems borders.

## **Automation Service Bus (ASB)**



Goal: Approaches for the integration of software tools in automation engineering.



- Technical Integration: Engineering Service Bus (1), Control Service Bus (2).
- Semantic Integration: Engineering Database (3).
- Flexible integration of SCADA (4) with data analysis/simulation (5).
- Defect detection approaches for design time (6) and run time (7).

## **Signal Engineering**



### Foundation

 The signal is a common concept for linking information between disciplines (e.g., mechanical interface, electrical signal (wiring), software I/O variable).

### **Challenges & Goals**

- Consistent signal handling (e.g., up to 40,000 signals in power plants).
- Integration of signals from heterogeneous data models / tools (1) and (2).
- Version management of signal changes across engineering disciplines.
- Common concept based on semantic integration (3).



## Virtual Common Data Model: Version Management across Tools





## Use Case – Signal Engineering of Hydro Power Plant Systems Integrators



## **Basic Signal Check-In Workflow**

logi.cals<sup>®</sup>

- Check-In of new signal list.
- Signal comparison with EDB.
- Pass new signals / unchanged signals to EDB.
- Manual confirmation of changed signals and override signal in EDB.



### Virtual common data model



## Signal Changes Across Tools and Disciplines



- Merge changes between signals coming from different disciplines.
- Conceptual Approach
  - 1. Execute Changes.
  - 2. Check-In and merge changes with Engineering Database
    - Conflicts can be changes semi-automatically.
    - Engineering tickets and notification in case of critical changes and conflicts (e.g., removed signals).
  - 3. Check-Out merged signal lists.





## **Pilot Application: Conflict Resolution**



Check in: Status of Imported Signals



### **Different Views**

- New Signals
- Unchanged Signals
- Changes / Conflicts

### Highlight & Resolve Differences



## **Pilot Application: Signal Browser**



- View signals in system topology.
- Identify and view of signal information.
- Export of result set and rework in spreadsheets.
- Candidate use case for next steps: Navigation to source data of signals in various tools (cross references).

| Queries for Subsystem selection                        | Visible                                                                               | <br>Hidden                                                                                                               |
|--------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Query Pathselection: Keyselection:  project1  B  0 040 | region<br>cpuNumber<br>channelName<br>functionTextOne<br>projectId<br>componentNumber | uuid<br>path<br>operationType<br>peripheralBoardAddress<br>inputOutputModule<br>customer<br>kks1<br>kks0<br>kks3<br>kks2 |

#### Show/hide individual data fields

## **Pilot Application: Signal Browser**



- View signals in system topology.
- Identify and view of signal information.
- Export of result set and rework in spreadsheets.
- Candidate use case for next steps: Navigation to source data of signals in various tools (cross references).

#### **Result Set**

| e | X | p | 0 | r | t | s | l | q | n | a | Is |  |
|---|---|---|---|---|---|---|---|---|---|---|----|--|
|   | _ | - |   | _ |   |   | _ | - | _ |   |    |  |

| Shov | ving 1 to | 50 of 347                 |    |                                                  | << < 1 <u>2 3 4 5 6 7 &gt; &gt;&gt;</u> |                 |  |
|------|-----------|---------------------------|----|--------------------------------------------------|-----------------------------------------|-----------------|--|
| line | region    | ion cpuNumber channelName |    | functionTextOne                                  | projectid                               | componentNumber |  |
| 1    |           | 02                        | 10 | Drainage pit 1 - drainage pump 2 temperature     | project1                                | 040             |  |
| 2    |           | 02                        | 11 | Drainage pit 1 - jet pump control valve - open   | project1                                | 040             |  |
| 3    |           | 02                        | 10 | Drainage pit 2 - drainage pump 2 temperature     | project1                                | 040             |  |
| 4    |           | 02                        | 11 | Drainage pit 2 - jet pump control valve - open   | project1                                | 040             |  |
| 5    |           | 02                        | 12 | Drainage pit 1 - jet pump control valve - closed | project1                                | 040             |  |

# Pilot Application: History of Signal Data logicols Check-Ins

| <ul> <li>Five most modified signals</li> <li>customer/project1/turbine/Auxillary_Rack/CPU_2/Cha<br/>customer/project1/control_board/Main_Rack/CPU_1/C<br/>customer/project1/turbine/Auxillary_Rack/CPU_2/Cha<br/>customer/project1/cooler/Main_Rack/CPU_3/Channel<br/>customer/project1/turbine/Auxillary_Rack/CPU_1/Cha</li> </ul> | Basic statistics on most<br>frequently changed signals                                                                                                                     |                                                                                                                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Commit via Hydro-EDB API<br>draft for new turbine fallback wiring <admin@ahy.com<br>Thu., 9. Dec. '10 - 2:01<br/>25 added, 2 modified, 0 deleted<br/><u>more</u></admin@ahy.com<br>                                                                                                                                                 | Committer: admin <admin<br>Author: admin <admin@al<br>Time: Tue., 19. Oct. '10 - 3<br/>Message:<br/>Commit via Hydro-EDB AP<br/>Previous Checkins</admin@al<br></admin<br> | @ahy.com><br>hy.com><br>:16                                                                                                                                          |  |
| - Revsion 126<br>Commit via Hydro-EDB API<br>Stress Test feedback <admin@ahy.com><br/>Thu., 9. Dec. '10 - 2:01<br/>3 added, 2 modified, 5 deleted<br/>more</admin@ahy.com>                                                                                                                                                          | <ul> <li>Of23ff9df702b48a8d</li> <li>Summary: 2 added, 15 mor<br/>Added</li> <li>customer/project1/8</li> <li>customer/project1/8</li> </ul>                               | fdd2a31a7b2407ab498c15<br>dified, 0 deleted<br>/010/01/01/1/02/6f730a33-a49f-4a3e-a7c3-8f908831ee1a<br>/010/02/01/1/02/fb8a688a-ac30-4c2f-8eb3-07cfd1ced621          |  |
| Check in history<br>Detailed Check-In<br>Information                                                                                                                                                                                                                                                                                | Modified<br>• customer/project1/B<br>• customer/project1/B<br>• customer/project1/B                                                                                        | /010/01/01/2/01/eb9a636c-6bd6-47e4-bdbf-f4e3e693d3c4<br>/010/01/01/3/00/9723b660-0a9b-4914-a715-1389663fc0cd<br>/010/01/01/3/01/147a6618-2eef-4b13-9d63-b7e0337790fc |  |

## UC: Signal Deletion with Engineering Tickets

logi.cals<sup>®</sup>

- Challenges and Goals
  - Some conflicts cannot be resolved during check-in, e.g., removed signals
  - Notification required to minimize surprises in the engineering team

### Conceptual Approach

- 1. Execute Changes
- 2. Conduct Difference Analysis
- 3. Identify "Removed Signals"
   → generate Engineering Ticket
- 4. Notifiy (multiple) related stakeholders
- 5. Checkout



Prototype: Engineering Ticket Overview logi.cols

## 

### • Challenges and Goals:

- Notification of stakeholders (e.g., warning on deleted signals)
- Ensure the correct process steps to deal with "deleted signals": Clear status of process

### Approach

- Engineering Ticket: "Change Request" that holds all relevant information for the roles involved.
- Allows tracking the process status
- Minimizes searching in documents

| Ticket | Summary                                              | Component      | Status   | Resolution         | Туре                    | Priority | Owner                 | Modified |
|--------|------------------------------------------------------|----------------|----------|--------------------|-------------------------|----------|-----------------------|----------|
| #1     | Signal 2345-FDCB-1241 removed                        | Generator      | new      |                    | review (signal deleted) | major    | florian.waltersdorfer | 04/08/10 |
| #3     | Signal 9537-A4DJ-2341 removed                        | Turbine2       | assigned |                    | review (signal deleted) | major    | stefan.biffl          | 04/08/10 |
| #8     | Signal 4232-FNXX-3283 changed                        | Turbine1       | accepted |                    | approve (signal change) | major    | peter.fruehwirt       | 04/08/10 |
| #9     | Signal 1232-UFEW-9231 changed                        | Generator      | new      |                    | review (signal deleted) | major    | stefan.biffl          | 04/08/10 |
| #12    | Signals changed (4 unapproved)                       | Schaltzentrale | new      |                    | approve (signal change) | major    | dietmar.winkler       | 17/09/10 |
| #11    | Signal deletion by florian.waltersdorfer (1 signals) | Turbine        | closed   | clear for deletion | review (signal deleted) | major    | dominik.hofer         | 24/09/10 |
| #10    | Signal deletion by florian.waltersdorfer (2 signals) | Turbine        | closed   | request for change | review (signal deleted) | major    | dominik.hofer         | 24/09/10 |
| #7     | Signal 9324-FWDF-2312 changed                        | Generator      | closed   | rejected           | review (signal deleted) | major    | peter.fruehwirt       | 04/08/10 |
| #6     | Signal 2333-WETD-9452 changed                        | Schaltzentrale | closed   | approved           | approve (signal change) | major    | peter.fruehwirt       | 04/08/10 |
| #5     | Signal 9122-UWDZ-2332 removed                        | Schaltzentrale | closed   | clear for deletion | review (signal deleted) | major    | florian.waltersdorfer | 04/08/10 |
| #4     | Signal 2312-ZWDA-1237 removed                        | Schleuse       | closed   | rejected           | review (signal deleted) | major    | stefan.biffl          | 04/08/10 |
| #2     | Signal 2781-ADEI-1325 changed                        | Generator      | closed 🎝 | rejected           | approve (signal change) | major    | peter.fruehwirt       | 04/08/10 |

## Prototype: "Deletion" Engineering Ticket logi.cols



### Pre-Defined Ticket Information

Ticket #10 (closed review (signal deleted): request for change) Modify 4 Signal deletion by florian.waltersdorfer (2 signals) Opened 3 months ago Last modified 0 seconds ago florian.waltersdorfer Owned by: dominik.hofer Reported by: Turbine Priority: major Component: Cc: Keywords: michael.petritsch Description (last modified by hydro) (diff) Reply Signal Main Rack/CPU 1/Channel 4/Pin 2 (id: 2d9e6e...) has been deleted. Type: analog Text: U1 - TEMP. STATORWINDING/phase U/ centre KKS: G-MKA20-CT001-B01 Further Information B+http://www.andritz.com/de/hydro/boyabat/links/eplan/2d9e6eb2-7eb6-4dac-b75b-b022b77618d7 Signal Auxiallary Rack/CPU 2/Channel 1/Pin 3 (389459...) has been deleted. Type: digital Text: 400 VAC Main distribution, busbar A, undervoltage KKS: G-MKA20-CL001-S01 **Further Information** e>http://www.andritz.com/de/hydro/boyabat/links/eplan/38945975-a91b-46d6-81de-d3a2119d2967

Data Source: Project Role Concept

VIENNA

Data source: Engineering Database

## Quality Assurance & Defect Detection in Engineering Models across Tools



Use of common concepts in models across engineering disciplines



### Defect type examples

- Missing, wrong, inconsistent model elements or relationships
- Conflicts from changes of overlapping model elements
- Run-time violation of model constraints

### **Defect detection approaches**

- Review of overlapping model parts
- Automated check of model assertions (syntactic and semantic)
- Change conflict detection and resolution
- Derivation of run-time assertions

## End-to-End Test Across Engineering Models



Use of common concepts in models across engineering disciplines





### **End-to-End Analysis**

- List of sensor name/description/type with Variable name/description/type
- Warnings for incomplete chains between variables and sensors

## Engineering Process Automation Concept





## **Conclusion and Further Work**

- Automation systems engineering projects
  - Contributions from several engineering disciplines
  - Need for version management across semantically heterogeneous data models in engineering tools and projects
- Automation Service Bus (ASB) and Engineering Database (EDB) concept enables
  - Version management
  - Change & conflict detection and resolution
  - Integrated quality assurance activities
- Further research work
  - Identify new use cases from heterogeneous application domains.
  - Identify candidate industry partners for research prototype development.



VIENNA

logi.cals<sup>®</sup>





## Version Management and Conflict Detection across Tools in a (Software+) Engineering Environment

Thomas Moser<sup>1</sup>, Florian Waltersdorfer<sup>1</sup>, Dietmar Winkler<sup>1,2</sup>, Stefan Biffl<sup>1</sup>

<sup>1</sup>Christian Doppler Laboratory CDL-Flex Institute of Software Technology and Interactive Systems, TU Vienna <sup>2</sup>logi.cals automation solutions & services GmbH

> http://cdl.ifs.tuwien.ac.at Dietmar.Winkler@tuwien.ac.at