Automation Supported Testing of Automation Systems
based on Test-First Development

Dietmar Winkler Stefan Biffl

Christian Doppler Laboratory “Software Engineering Integration
for Flexible Automation S%I’IS (CDL-Flex)

Institute of Software Technology andqlr-]te’ractive Systems (ISIS)
Vienna University ¢fife@inology

http://cdl.ifs.tuwfgn.ac.at

COMPUTER SOCIETY

. OESTERREICHISCHE
® COMPUTER GESELLSCHAFT
Ogl C o S AUSTRIAN

Context & Motivation

Software components in automations systems

Added value provided by software components (software-intensive systems).
Realization of functional behavior in software components.

Increased flexibility (e.g., response to changing requirements, reconfiguration).
Delivery of (tested) releases within short iterations.

Challenges and Goals

Functional, testing, and diagnosis aspects are scattered over the code and hinder
efficient automation systems testing.

-> Need for efficient testing methods and automated testing strategies.

Limitations in systematic development processes.
- Need for flexible and systematic systems development processes.

Application of Best-Practices derived from business IT software development

Test-first (test-driven) development.

Continuous Integration and systematic testing.

Automation-supported test case generation, execution, and reporting.
Prototype application “Bottle Sorting Application” for evaluation purposes.

Hm

@)

3

Foundation for Automation Supported Testing
Test-First Development

Test-Driven Development Steps:

1.

2,
3.

Think: (a) selection of new requirements and (b) test case
definition.

Red: Implementation and execution of test cases (failed).

Green: Implementation of functionality and test case execution

until all tests are successful.

Refactor existing code without modifying functional behaviour

and test case execution. Continue at step 1.

4
Continuous Integration and Test: Requirements and Test Case Implemlntation and
Specification Generation Test Case E&ution
Frequent test runs (A |) U
Immediate Feedback on test results @
. . Test Run during Continuous Integration
(e.g., daily builds) .. | Run1| Run2| Run3| ..
Efficient regression testing. Requireme““\i TestDase Al
Automation and tool support Testcaser2 | @) | @) | @
Requirement Bi Test Case B1 ‘ .
Test Case B2 ‘ . . ‘ %
Requirement Ci Test Case C1 ‘
Test Case C2—

D. Winkler, R. Hametner, S. Biffl: ,Automation Component Aspects for Efficient Unit Testing®, Proceedings of 14th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Mallorca, Spain, 2009.

Foundation for Automation Supported Testing

Model-Driven Testing based on UML

H

(@)

Sy_stem | Static System | System Behaviour
Requirements Structure
Use Cases Hstem States Tempc_:ral Workflows
Components Behaviour
Test Scenarios Individual Test Cases
Phase UML Diagram Type Test Level Stakeholder
Requirements Definition Use Cases System [/ Acceptance Testing Customer, Systems Integrators

Actiity Diagram

Functional and Technical Deployment Diagram Architecture / Integration Testing Engineering Team

Systems Design

Component Diagram
State Chart

Component Specification

State Chart Component Testing

Sequence Chart
Timing Diagram

Individual Engineer

Implementation

State Chart Developer Testing

Sequence Chart

Indimdual Engineer

R. Hametner, D. Winkler, T. Ostreicher, N. Surnic, S. Biffl : ,Selecting UML Models for Test-Driven Development along the Automation Systems
Engineering Process®, 15th IEEE Int. Conf on Emerging Technologies and Factory Automation (ETFA), WIP, Bilbao, Spain, 2010.

Basic Test Levels in Automation Systems n E

Systematic Development Processes, e.g., based on the V-Modell XT*, enable
automation supported testing on various levels.

= System Test Level based on requirements and use cases.

= Integration Test Level based on architecture, components, and the interaction
between components.

= Unit Test Level based on individual components.

Customer System level System Acceptance
Requirements | System & M| System & Tests
I Acceptance System E Acceptance
(&) System Test Subsystem | | Subsystem | | Subsystem 171 Test
Specification - : ~
O .4-"- : "‘u‘
I P - : T s -
D— "'.“' : “‘t‘
ll] Architecture level Subsystem -
<{ | Architecture & S Si“b 2 - S StUb ¢ |Integration
P Subsystem In?:gfant.lion (;I:"est Cage l:> -~ |::>T95t Case In::g?arl:'lon Test
: - i FB FB :

O oy - : - o
N e F e, 5

] -ar” * ' - P
by @ . !
E COmpDnEnt Unit level Component

Specification fleideled Test Case Function Block Test Case Function Unit Test
Block & i ; : Block & S
Generatio , Execution
Test Cases Implementation Test Cases

¢

5 *V-Modell XT: http://www.v-modell-xt.de

(@)

Research Approach

Need

(@)

= Automation supported and flexible systems development processes and efficient
testing in automation systems projects.

Approach

= Development of an automated testing framework that supports frequent test runs.
= Definition of a test management process approach
= First evaluation in a prototype application: bottle sorting application.

[teration 1

Iteration 2

lteration n

Reguirements
Definition

Tasl T
Generation

Funct. & Technical
Systems Design

Requirements

Architecture & Integration

Tast Case

Generalicn

Systems and
Acceptance Tests

Integration Testsw

Component

Specification

Component

Unit Tests

Tesl Cage
Generatian

Implemeantation of

Test-Driven Automation Components

VIENNA

Automation Systems @)

Test Framework for Test-First Development of n TU

(b} Test Runner (Host-System/Target-System)
Test Case Reports / Test Anaiysis &
Test Case/Suite Scenarios Reportin
ur Test Runner @ Coverage-Analysis
Selection Diagnosis Data RediGreen Matrix
Testinﬂ)iagnusis
Upload Parameters & Download)
Execute Test Suite Results Tast Reméng
{a) Test Suite (c) Software under Test (d) Visualised Test Reports
(SuT) & Test Fixture i
l """‘”s,;‘:rr“.“:‘.a"“’ | B | f’i.“;"‘.‘cr?.::“?im& |
. Target System
ii. IEC 61131 or [EC U Q o e il
61499 mmmmm Te=d Casa A1 o |
UML Models Applications _\ ; @ @ @ @
Tast Cane A2 . . @. @
Static |Dynamic Frisr Casg 1
Structure |Behavior A p : . . @ @ @
Toat Case BT . . @. @
Diagnﬂsls Reguifemeant T" Tast Cane G4 . @ @ @
Log b . - —
Results of an individual test run
1. Test case generation 3. Capture test and diagnosis results
2. Test case execution on target 4. Analyzing test results

environment 5. Testreporting

Test Process n TU
D)

Step 1: Automation supported test case generation

a) Capturing basic systems requirements. Siep 1 _

b) Test Scenarios based on Use Cases. T?Qi;’;i{;?;ﬁlﬁ“

c) Automation supported test case generation.

d) Test-Framework with keyword driven test. - *

&P
. Test Execution on

= Step 2: Test case execution on target system Target System

a) Upload code to target system (modeled in function blocks).

b) Logging of diagnosis data. Siep 3 *

Logging & Test

= Step 3: Capture test and diagnosis results Results

- Capture results assigned to test cases and test scenarios. *

Step 4

= Step 4: Analyzing test results

. Test Run Analysis
- Analyzing test results. Y

= Step 5: Test reporting *

- Generate test report, e.g., following the continuous s
integration and test strategy.

Test Reporting

Sorting Application Prototype:

Capturing Basic Systems Requirements

= Bottle sorting application
— ldentification of individual bottles on a conveyor (stopper unit).
— Move identified bottles to the second conveyor (handling unit).
— Stop at the appropriate loading station (sorting unit).
— Move sorted bottles to an appropriate box (according to the colour).
= Focus on the handling unit.

9 http://www.acin.tuwien.ac.at/

VIENNA

U

(@)

Loading Station

J==3

2

~

Handling unit
ng J Stopper unit
lPositioning unit J
- N -~
Horizontal ’ vertical ’ Vacuum ’
Linear axis Linear axis

[
H
< ‘-3
N 5
\ 5
L
.
N

gripper

. .
< -3
., /
. /
S
N Y
e

i =

UML Component diagram of the Handling unit

10

Sorting Application Prototype:
Test Scenarios based on Use Cases

(@)

Expected user behaviour on requirements level from user perspective.
Use cases drive the composition of test scenarios.
Handling unit picks one bottle from conveyor 1 to conveyor 2.

Advantages:

Common “language” between

different disciplines.

Enhanced understanding of the % \/ ~inolude>
Loading T~a

customer requirements.

Test scenarios as vehicle for

communication between

stakeholders

Use Case: Handling Unit

Station

Pick Up Part —
<include> _ —— -
Gripper
<include>~ ~ - _ Position
Gripper B
Positioning
Unit

No

Description

Scope

Pre-condition

Action

Expected Result /
Post-Condition

Sorting a Bottle

System: Bottle
sorting application

Handling Unitin idle position
No bottle present

Command to sort bottle

Handling unitin idle position
and part sorted

1.1 |Recognizing Bottle |Subsystem: Conveyor running Stopping bottle Bottle stopped by stopper unit
at Conveyor 1 Stopper Bottle available

1.2 |Moving Bottle from |[Subsystem: Bottle available Gripping, moving, and Bottle moved to conveyor 2
Conveyor1to 2 Handling Unit Gripperinidle position releasing bottle Gripper returned to idle

position

Sorting Application Prototype: n TU

VIENNA

Automation Supported Test Case Generation D)

= Behaviour diagram (state chart) as foundation for automated test case generation.
= Test cases can be derived directly from state charts

= State charts should cover all states and the overall specification

= Test Scenario “Sorting a Bottle”

= Subsystem “Handling Unit”: Moving bottle from Conveyor 1 to Conveyor 2
(components: stopper unit & handling unit)

= Subsystem “Sorting Unit”: Stopping and sorting bottle to appropriate box.

4 Stopper e Handling Unit = N

——fi2)

[Left Position &d&
Extanded _ Bottle Arrived] _
Ungrip Grip

[Fight Pacition]

[Bottle

ramowvad] ner.rived] [Crip] 2
Pasition [Ungrip &d&
(“_t’ ©> 5ms]

h AN v

[Eottle | L

Paosition

Executed Test Case

Test Scenario with three

11 Test Cases

Sorting Application Prototype:
Derived Test Cases from State Chart

(@)

= Automation supported test case generation based on transitions of the state

charts.

= Definition of test scenarios (sequences of individual test cases).

No Description

Pre-condition

Action

Expected Result /
Post-Condition

F
1.1.1|Stopper Unit:
Stop bottle

State=Stopper.Contracted
No bottle present

Bottle arrived

Stopper extended && _
bottle stopped

F
1.1.2 |Stopper Unit:
Bottle removed

State=Stopper. Extended
Bottle present

Bottle removed

Stopper contracted

Il'r1.2.1 Handling Unit:
Grip bottle

State=(Stopper.Extended &&
HandlingUnit.Ungrip &&
HandlingUnit.Left)

Bottle arrived

State=(Stopper.Extended &&
HandlingUnit.Grip)

,1.2.2 Handling Unit:
Release bottle

State=HandlingUnit.Right &&
HandlingUnit.Grip

Ungrip

State=HandlingUnit.Right &&
HandlingUnit.Ungrip

I|I'r1.2.3 Handling Unit:
Move and release
bottle

State=(Stopper.Extended &&
HandlingUnit.Left)

Move to Right

State=(Stopper.Extended &&
HandlingUnit.Grip &&
HandlingUnit.Right)

,1.2.4 Handling Unit:
Return to idle state

State=HandlingUnit.Right

Wait 8ms && Ungrip

State=HandlingUnit.Left

12

Sorting Application Prototype:
Keyword Driven Test: Definition & Execution

= Keyword-Driven Test based on a Spreadsheet (Excel)
= Transform and execute (selected) tests on a target platform, e.g., applying

logi.CAD/RTS.

4 Stopper A
Extended
T1.1.1
[Bottle [Eottle
ramovead] rrived]
Contracted
A A

13 http://www.logidiag.at/ld/logi.DIAG/

) [] F |
1 | Resource QfHing-Conk OFfline-Tests Mode
2 | Type of Test OFFLIMNE
A B C i
1 | Script TEST_IDLE Fun Test |
2 P 2
3 P2 Systemn { Component [Testld | Scenario Pre-Condition Status
b
g Ei 2 | Sorting Application T Sorting a battle System is running wAHR
6 P& . Stopper Unit Ti1 Fecognizing Bottle at Conveyor 1 E._'-::-il;i}:.:r running, bottles | WAHE
7 Res WAHR 10 | Stopper Unit Ti141 Stop bottle Stopper.contracted wAHR
8 1 | Stopper Unit Ti1.2 Eottle removed Stopper.Extended wAHR
q 12 | Handling Unit T.2 floving bottle from Conweyor 100 bottle available, gripperidle | WaHR
10 Run Test Handling Unit Tz Girip battle g;m:[ﬁtnﬂpper.EHtended WAHF
11 HandlingUnit.Ungrip fé
12 Ergebnis [Zyklus/Zeit [Aktion 1 13 HandlingUnit. L eft)
13 WAHR 0 START
14 WAHR 1 FORCE ACTIVATE FALSE
15 © WAHR 1 FORCE A FALSE
16 © WAHR 1 FORCE B FALSE
17 WAHR 1 FORCE TimeDiscrepancy 10
18 = WAHR 1 WAIT 1000
19 WAHR 1 ASSERT READY FALSE
20 0 WAHR 1 ASSERT DiagCode 0x8000
21 WAHR 1 FORCE ACTIVATE TRUE
22 WAHR 1 WAIT 1000
23 WAHR 1 ASSERT READY TRUE
24 - WAHR 5 ASSERT 5F_EquivalentOut FALSE
25 WAHR 1 ASSERT Error FALSE
26 WAHR 1 ASSERT DiagCode 08001
27 WAHR 5 5TOP

28 Anweisungen vor dieser Zeile einfiigen

Anweisungen vor dieser Zeile einfiigen

Sorting Application Prototype:
Capture test and diagnosis results D)

Keyword driven test — Execution Steps:
= Upload statements and Test Parameters to target system.

= Sequential execution of individual statements.

= Logging of diagnosis data for defect detection & traceability.
= Download test case results to Host-System

Test Runner

Upload Parameters &
Execute Test Suite

@

Download
Results

®

[EH ogi.CAD Projekimanagement: 'C-\Users\Thomas\Desktop\log: DIAG\Safety Test' - Functionplans\T1_SF_Antivalent . [STET .

- = E 3 = =3

Projekt Objekt Bearbeiten Ansicht Fenster Tools Hilfe
| ot [
s & ABED.

e ? X! 71_sF_Antivalent (30 Anderun...

(c) Software under Test
(SuT) & Test Fixture

Target System

IEC 61131 or IEC

51499
Applications

Diagnosis
Log
(TXT)

< T
PROI |POE TYP L

B EE L B PE DERER H P .

L gBF SB_Tric« [] 7 T

LB TLSE.
- NTX86

L LR NTxes| |
- . Offline-Co -
E- b Offling

55 Def

@] Ted
[+ Standardlilz | = e

- TCS_Safety
=

-9 D ataty|i

A index.H

I _Dpi:
SFAnt | |+
4B} SF_EDN
- 4B} SF_Emi
SF Ena
= SF_ Equ
4B} SF_ESP
e SF_Guz &
SF Guz
- JEf SFMe | |
- 4BF SF_Mu
| 3

Fehler-Status-Anzeige

p ox

T

I 5
Bl.-Name: | 0001 lwr:| A0 pos.:| 3336

14

Test Runner

Sample Test Case Execution on Target System with logi. CAD/RTS

VIENNA

Analyzing Test Results D)

Sorting Application Prototype: n TU

= Individual test cases are based on transitions (change of states).
= Test scenarios encapsulate a defined set of test cases (metric: test coverage)
= Requirements include a set of test scenarios.

= Aggregation of Statement/Test case results on scenario and/or requirements
level.

Requirement A1
(sorting a bottle)

/

Test Scenario S1.1 Test Scenario 51.2
(Bottle Recognition) (Moving Bottle)
Move and Release

(T1.2.3)

Stop Bottle Grip Bottle
(T1.1.1) (T1.2.1)

16

Sorting Application Prototype:

Test reporting

= Aggregation of test results and logging data.

= Project management.

— Project Progress in terms of completed software functions.

— Quality Status: test case results and test coverage.

Requirements and Test Case Generation
Specification (Scenarios & Test Cases)

(

4 .

U

)

Implementation and
Test Case Execution

A

4

Run 3

Q Test Run during Continuous Integration

Run 4 Run 5

Fequirement A1

(Sort a Bottle)

- T1.1.1: Stnp .
Bottle
T1.2.1; Grip .
Bottle
T1.2.3: Move .
and Release

-

(@)

Executed
Test Case

17

Lessons Learned & Future Work

Increased flexibility and (software) complexity in the automation systems domain
lead to new challenges in software construction.

Lessons learned from business IT software development can help systems
engineers in constructing high-quality products in short iterations.

Lessons learned from a pilot application showed the expected benefits in a small
show case application.

— Systematic engineering process support based on the V-Modell XT and
Test-First Development (TFD) on various levels.

— (Automated) test case generation lead to frequent test runs and continuous
engineering project monitoring and control.

Future work includes
— Refining the process model and the keyword driven test approach.
— Investigating the scalability of the test framework in a larger project context.

— Elaborating on a larger pilot application with industry partners with focus on
data collection to empirically investigate the expected benefits.

Hm

@)

18

Backup

NNNNNN

Sorting Application Prototype: n TU
Integration and Unit Tests

(@)

= State charts are common practices in the automation systems domain.
= Ability for automated code generation.

= Modelling of state charts including error states.

= Example: handling unit on component level.

State Chart: Handling Unit Error [error cleanad)
[error]

[error] [error] [errar]

Move to Move to Move to

Palette Box Release Start

[sort] [arrived al [arasped] [arrived [released)
paletie) at box]
[arrived at start]
Mo Desc. Level | Type® Pre-condition Input Expected Result Post-condition
1 Gripper move to Pos Comp. NC Handling Unit idle Sort part Gripper moved to intended position E;;EE;IS in intended
. Handling Unit in idle Sort part Positioning Unit reports an error; Handling Unit in idle

2 Axis got stuck Comp EC Position error after 3s Handling Unit idle position

19

