
Automation Supported Testing of Automation Systems Automation Supported Testing of Automation Systems
based on Testbased on Test--First DevelopmentFirst Development

Dietmar Winkler Stefan BifflDietmar Winkler Stefan Biffl

Christian Doppler Laboratory “Software Engineering Integration
for Flexible Automation Systems” (CDL-Flex)

Institute of Software Technology and Interactive Systems (ISIS)
Vienna University of Technology

http://cdl.ifs.tuwien.ac.at

p
.Tool Mec. SCADA

Model Mec

T
e
ch

.
In

te
ro

pTool Mec.

Tool Elec.

Workflow

Analysis

Tool SW

Model Mec.

Model
SW

Model
Elec.

Context & Motivation

Software components in automations systems

� Added value provided by software components (software-intensive systems).

� Realization of functional behavior in software components.

� Increased flexibility (e.g., response to changing requirements, reconfiguration).

� Delivery of (tested) releases within short iterations.

Challenges and Goals

� Functional, testing, and diagnosis aspects are scattered over the code and hinder
efficient automation systems testing.
���� Need for efficient testing methods and automated testing strategies.

� Limitations in systematic development processes.
���� Need for flexible and systematic systems development processes.

Application of Best-Practices derived from business IT software development

� Test-first (test-driven) development.

� Continuous Integration and systematic testing.

� Automation-supported test case generation, execution, and reporting.

� Prototype application “Bottle Sorting Application” for evaluation purposes.
2

Foundation for Automation Supported Testing

Test-First Development

Test-Driven Development Steps:
1. Think: (a) selection of new requirements and (b) test case

definition.
2. Red: Implementation and execution of test cases (failed).2. Red: Implementation and execution of test cases (failed).
3. Green: Implementation of functionality and test case execution

until all tests are successful.
4. Refactor existing code without modifying functional behaviour

and test case execution. Continue at step 1.

Requirements and
Specification

Test Case
Generation

Implementation and
Test Case Execution

Test Run during Continuous Integration
Run 1 Run 2 Run 3

� Continuous Integration and Test:

� Frequent test runs
� Immediate Feedback on test results

(e.g., daily builds)
Requirement A

Requirement B

Requirement C

Test Case A1

Test Case A2

Test Case B1

Test Case B2

Test Case C1

Test Case C2

Run 1 Run 2 Run 3 ...

ok ok ok

...

ok ok ok ok ok

ok ok

ok

ok ok ok ok

(e.g., daily builds)
� Efficient regression testing.
� Automation and tool support

3 D. Winkler, R. Hametner, S. Biffl: „Automation Component Aspects for Efficient Unit Testing“, Proceedings of 14th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Mallorca, Spain, 2009.

Foundation for Automation Supported Testing

Model-Driven Testing based on UML

4 R. Hametner, D. Winkler, T. Östreicher, N. Surnic, S. Biffl : „Selecting UML Models for Test-Driven Development along the Automation Systems
Engineering Process“, 15th IEEE Int. Conf on Emerging Technologies and Factory Automation (ETFA), WIP, Bilbao, Spain, 2010.

Basic Test Levels in Automation Systems

Systematic Development Processes, e.g., based on the V-Modell XT*, enable
automation supported testing on various levels.

� System Test Level based on requirements and use cases.

� Integration Test Level based on architecture, components, and the interaction
between components.between components.

� Unit Test Level based on individual components.

5 *V-Modell XT: http://www.v-modell-xt.de

Research Approach

Need

� Automation supported and flexible systems development processes and efficient
testing in automation systems projects.

Approach

� Development of an automated testing framework that supports frequent test runs.

� Definition of a test management process approach

� First evaluation in a prototype application: bottle sorting application.

6

Test Framework for Test-First Development of

Automation Systems

1. Test case generation

2. Test case execution on target
environment

3. Capture test and diagnosis results

4. Analyzing test results

5. Test reporting7

Test Process

� Step 1: Automation supported test case generation

a) Capturing basic systems requirements.

b) Test Scenarios based on Use Cases.

c) Automation supported test case generation.

d) Test-Framework with keyword driven test.d) Test-Framework with keyword driven test.

� Step 2: Test case execution on target system

a) Upload code to target system (modeled in function blocks).

b) Logging of diagnosis data.

� Step 3: Capture test and diagnosis results

- Capture results assigned to test cases and test scenarios.

� Step 4: Analyzing test results� Step 4: Analyzing test results

- Analyzing test results.

� Step 5: Test reporting

- Generate test report, e.g., following the continuous
integration and test strategy.

8

� Bottle sorting application

– Identification of individual bottles on a conveyor (stopper unit).

– Move identified bottles to the second conveyor (handling unit).

– Stop at the appropriate loading station (sorting unit).

– Move sorted bottles to an appropriate box (according to the colour).

Sorting Application Prototype:

Capturing Basic Systems Requirements

– Move sorted bottles to an appropriate box (according to the colour).

� Focus on the handling unit.

Gripper unit

Conveyors

Sorting Equipment

9 http://www.acin.tuwien.ac.at/

UML Component diagram of the Handling unit

� Expected user behaviour on requirements level from user perspective.

� Use cases drive the composition of test scenarios.

� Handling unit picks one bottle from conveyor 1 to conveyor 2.

Sorting Application Prototype:

Test Scenarios based on Use Cases

Advantages:

� Common “language” between
different disciplines.

� Enhanced understanding of the
customer requirements.

� Test scenarios as vehicle for
communication between
stakeholders

10

No Description Scope Pre-condition Action
Expected Result /

Post-Condition

1 Sorting a Bottle System: Bottle

sorting application

Handling Unit in idle position

No bottle present

Command to sort bottle Handling unit in idle position

and part sorted

1.1 Recognizing Bottle

at Conveyor 1

Subsystem:

Stopper

Conveyor running

Bottle available

Stopping bottle Bottle stopped by stopper unit

1.2 Moving Bottle from

Conveyor 1 to 2

Subsystem:

Handling Unit

Bottle available

Gripper in idle position

Gripping, moving, and

releasing bottle

Bottle moved to conveyor 2

Gripper returned to idle

position

Sorting Application Prototype:

Automation Supported Test Case Generation

� Behaviour diagram (state chart) as foundation for automated test case generation.

� Test cases can be derived directly from state charts

� State charts should cover all states and the overall specification

� Test Scenario “Sorting a Bottle”

1.2.1

� Subsystem “Handling Unit”: Moving bottle from Conveyor 1 to Conveyor 2

(components: stopper unit & handling unit)

� Subsystem “Sorting Unit”: Stopping and sorting bottle to appropriate box.

11

Executed Test Case

Test Scenario with three

Test Cases

1.1.1

1.2.3

Sorting Application Prototype:

Derived Test Cases from State Chart

� Automation supported test case generation based on transitions of the state
charts.

� Definition of test scenarios (sequences of individual test cases).

No Description Pre-condition Action
Expected Result /

Post-Condition

1.1.1 Stopper Unit:

Stop bottle

State=Stopper.Contracted

No bottle present

Bottle arrived Stopper extended &&

bottle stopped

1.1.2 Stopper Unit:

Bottle removed

State=Stopper. Extended

Bottle present

Bottle removed Stopper contracted

1.2.1 Handling Unit:

Grip bottle

State=(Stopper.Extended &&

HandlingUnit.Ungrip &&

HandlingUnit.Left)

Bottle arrived State=(Stopper.Extended &&

HandlingUnit.Grip)

1.2.2 Handling Unit: State=HandlingUnit.Right && Ungrip State=HandlingUnit.Right &&

12

1.2.2 Handling Unit:

Release bottle

State=HandlingUnit.Right &&

HandlingUnit.Grip

Ungrip State=HandlingUnit.Right &&

HandlingUnit.Ungrip

1.2.3 Handling Unit:

Move and release

bottle

State=(Stopper.Extended &&

HandlingUnit.Left)

Move to Right State=(Stopper.Extended &&

HandlingUnit.Grip &&

HandlingUnit.Right)

1.2.4 Handling Unit:

Return to idle state

State=HandlingUnit.Right Wait 8ms && Ungrip State=HandlingUnit.Left

Sorting Application Prototype:

Keyword Driven Test: Definition & Execution

� Keyword-Driven Test based on a Spreadsheet (Excel)

� Transform and execute (selected) tests on a target platform, e.g., applying
logi.CAD/RTS.

T1.1.1

1313 http://www.logidiag.at/ld/logi.DIAG/

Sorting Application Prototype:

Capture test and diagnosis results

Keyword driven test – Execution Steps:

� Upload statements and Test Parameters to target system.

� Sequential execution of individual statements.

� Logging of diagnosis data for defect detection & traceability.

� Download test case results to Host-System

14 Sample Test Case Execution on Target System with logi.CAD/RTSTest Runner

Sorting Application Prototype:

Analyzing Test Results

� Individual test cases are based on transitions (change of states).

� Test scenarios encapsulate a defined set of test cases (metric: test coverage)

� Requirements include a set of test scenarios.

� Aggregation of Statement/Test case results on scenario and/or requirements
level.

15

Sorting Application Prototype:

Test reporting

� Aggregation of test results and logging data.

� Project management.

– Project Progress in terms of completed software functions.

– Quality Status: test case results and test coverage.– Quality Status: test case results and test coverage.

Executed
Test Case

16

Lessons Learned & Future Work

� Increased flexibility and (software) complexity in the automation systems domain
lead to new challenges in software construction.

� Lessons learned from business IT software development can help systems
engineers in constructing high-quality products in short iterations.engineers in constructing high-quality products in short iterations.

� Lessons learned from a pilot application showed the expected benefits in a small
show case application.

– Systematic engineering process support based on the V-Modell XT and
Test-First Development (TFD) on various levels.

– (Automated) test case generation lead to frequent test runs and continuous
engineering project monitoring and control.

� Future work includes� Future work includes

– Refining the process model and the keyword driven test approach.

– Investigating the scalability of the test framework in a larger project context.

– Elaborating on a larger pilot application with industry partners with focus on
data collection to empirically investigate the expected benefits.

17

Backup

18

� State charts are common practices in the automation systems domain.

� Ability for automated code generation.

� Modelling of state charts including error states.

� Example: handling unit on component level.

Sorting Application Prototype:

Integration and Unit Tests

� Example: handling unit on component level.

19

