Interdisciplinary Systems Development Projects: Change Management across Disciplines and Tools

Dietmar Winkler Stefan Biffl

Christian Doppler Laboratory "Software Engineering Integration for Flexible Automation Systems" (CDL-Flex)
Institute of Software Technology and Interactive Systems (ISIS) Vienna University of Technology

http://cdl.ifs.tuwien.ac.at

logi.cals®

STERREICHISCHE

OMPUTER SOCIETY

USTRIAN

OMPUTER GESELLSCHAFT

Context and Motivation

- Automation systems engineering projects
 - Contributions from several engineering disciplines.
 - Distributed development projects.
 - Complex artifacts like mechanical, electrical, and software components and plans, which get updated concurrently.

- Change and Version Management
 - Available for each individual engineering discipline.
 - Very little work on change and management across semantically heterogeneous data models in engineering tools and projects.
- Challenge
 - Efficient change management activities embedded within an engineering process across disciplines, data models, and tools.

Engineering Object Change Management

- Concurrently changes in distributed environments require efficient change management approaches (1).
- Efficient synchronization mechanisms (2) enable cross-disciplinary change management based the Engineering Service Bus Platform.

Agenda

- Efficient change management process across disciplines, data models, and tools:
 - Identification of common concepts in individual disciplines to link domain-specific data models.
 - Establishing a virtual common data model for efficient and effective data exchange approaches.
 - Establishing a change management process approach across disciplines and tool borders.

Prototype implementation

- Feasibility study of the integrated change management approach at a hydro power plant systems integrator.
- Measurement of processes for verification and validation.
- Added value component
 - Engineering cockpit for project monitoring and control.

Common Concepts: Signals & Signal Engineering

Foundation

 The signal is a common concept for linking information between disciplines (e.g., mechanical interface, electrical signal (wiring), software I/O variable).

Challenges & Goals

- Consistent signal handling (e.g., up to 40,000 signals in power plants).
- Integration of signals from heterogeneous data models / tools (1) and (2).
- Version management of signal changes across engineering disciplines.
- Common concept based on semantic integration (3).

Virtual Common Data Model: Change & Version Management across Tools

VIENNA

Signal Changes Across Tools and Disciplines

Challenges and Goals

- Merge changes between signals coming from different disciplines.
- Conceptual Approach
 - 1. Execute Changes.
 - 2. Check-In and merge changes with Engineering Database
 - Conflicts can be changes semi-automatically.
 - Engineering tickets and notification in case of critical changes and conflicts (e.g., removed signals).
 - 3. Check-Out merged signal lists.

Pilot Application: Change & Conflict Identification & Resolution

Check in: Status of Imported Signals

Different Views

- New Signals
- Unchanged Signals
- Changes / Conflicts

Highlight & Resolve Differences

Signal	Update whole row		channelName	inputOutputModule	functionTextOne		projectid	customer		
0	<u>keep all</u>	old value: new value:	6	3	H_U#p 110VDC High oil pres pump feeder (Q12 F71 F72) ready ✓ H_U#p 110000VDC High oil pres pump feeder (Q12 F71 F72) ready		Kandil	Sabanci		
0	<u>keep all</u>	ep all old value: new value: 10 7			H_U#p St Service MV cubicle HV fuse fault	Tyrkie	Kandil	Sabanci		
	Conflicts									
	 Old & New values 									
	Selection and Notification									
	Confirmation / Change & Conflict Resolution									

Pilot Application: History of Signal Data Check-Ins

 Five most modified signals customer/project1/turbine/Auxillary_Rack/CPU_2/Ch customer/project1/control_board/Main_Rack/CPU_1, customer/project1/turbine/Auxillary_Rack/CPU_2/Ch customer/project1/cooler/Main_Rack/CPU_3/Channe customer/project1/turbine/Auxillary_Rack/CPU_1/Ch Revsion 127 — 	Basic statistics on most frequently changed signals			
Commit via Hydro-EDB API draft for new turbine fallback wiring <admin@ahy.co Thu., 9. Dec. '10 - 2:01 25 added, 2 modified, 0 deleted <u>more</u></admin@ahy.co 	Committer: admin <admin@ Author: admin <admin@ahy Time: Tue., 19. Oct. '10 - 3:10 Message: Commit via Hydro-EDB API Previous Checkins</admin@ahy </admin@ 	ahy.com> com> 6		
Revsion 126 Commit via Hydro-EDB API Stress Test feedback <admin@ahy.com> Thu., 9. Dec. '10 - 2:01 3 added, 2 modified, 5 deleted more Check in history Detailed Check-In Information</admin@ahy.com>	Summary: 2 added, 15 mo Added • customer/project1/B • customer/project1/B • customer/project1/B • customer/project1/B • customer/project1/B	 Detailed information on Previous checkins Summary of current checkin (e.g., added signals, removed signals, and modified signals 		

Notification based on Changes: Signal Deletion with Engineering Tickets

- Challenges and Goals
 - Some conflicts cannot be resolved during check-in, e.g., removed signals
 - Notification required to minimize surprises in the engineering team

Conceptual Approach

- 1. Execute Changes
- 2. Conduct Difference Analysis
- 3. Identify "Removed Signals"
 → generate Engineering Ticket
- 4. Notifiy (multiple) related stakeholders
- 5. Checkout

Prototype Implementation: Engineering Ticket Overview

- Challenges and Goals:
 - Notification of stakeholders (e.g., warning on deleted signals)
 - Ensure the correct process steps to deal with "deleted signals": Clear status of process
- Approach
 - Engineering Ticket: "Change Request" that holds all relevant information for the roles involved.
 - Allows tracking the process status
 - Minimizes searching in documents

Ticket	Summary	Component	Status	Resolution	Туре	Priority	Owner	Modified	
#1	Signal 2345-FDCB-1241 removed	Generator	new		review (signal deleted)	major	florian.waltersdorfer	04/08/10	
#3	Signal 9537-A4DJ-2341 removed	Turbine2	assigned		review (signal deleted)	major	stefan.biffl	04/08/10	
#8	Signal 4232-FNXX-3283 changed	Turbine1	accepted		approve (signal change)	major	peter.fruehwirt	04/08/10	
#9	Signal 1232-UFEW-9231 changed	Generator	new		review (signal deleted)	major	stefan.biffl	04/08/10	
#12	Signals changed (4 unapproved)	Schaltzentrale	new		approve (signal change)	major	dietmar.winkler	17/09/10	
#11	Signal deletion by florian.waltersdorfer (1 signals)	Turbine	closed	clear for deletion	review (signal deleted)	maior	dominik.hofer	24/09/10	
#10	Signal deletion by florian.waltersdorfer (2 signals)	Turbine	closed	request for change	review (signal deleted)	major	dominik.hofer	24/09/10	
#7	Signal 9324-FWDF-2312 changed	Generator	closed	rejected	review (signal deleted)	major	peter.fruehwirt	04/08/10	
#6	Signal 2333-WETD-9452 changed	Schaltzentrale	closed	approved	approve (signal change)	major	peter.fruehwirt	04/08/10	
#5	Signal 9122-UWDZ-2332 removed	Schaltzentrale	closed	clear for deletion	review (signal deleted)	major	florian.waltersdorfer	04/08/10	
#4	Signal 2312-ZWDA-1237 removed	Schleuse	closed	rejected	review (signal deleted)	major	stefan.biffl	04/08/10	
#2	Signal 2781-ADEI-1325 changed	Generator	closed 🎝	rejected	approve (signal change)	major	peter.fruehwirt	04/08/10	

Prototype Implementation: "Deletion" Engineering Ticket

Pre-Defined Ticket Information

Data Source: Project Role Concept

VIENNA

Data source: Engineering Database

Process Measurement and Analysis: Basic Signal Check-In Workflow

- Check-In of new signal list.
- Signal comparison with EDB.
- Pass new signals / unchanged signals to EDB.
- Manual confirmation of changed signals and override signal in EDB.

VIENNA

13

Process Measurement and Analysis: Signal Change Management Process with Events

- Signal Changes
 - Modified signals
 - New signals
 - Removed signals
 - Accepted / rejected signals
- Notification of changes to related stakeholders
- Events (E1 .. E10) enable process observation and project control
- Evaluation: pilot application based on historical data.

Process Measurement and Analysis: Feasibility Study Concept

- Goal:
 - Verification and validation of signal change management (process behavior)
 - Definition of project metrics, i.e., number of change per engineering phase / check-in sequence) for project monitoring and control.
- Measurement Data & Metrics
 - Events (E1 ... E10)
 - Definition of Product and Project Metrics based on signal changes.
- Material:
 - Real world project (hydro power plant) with three different signal lists in early phases of development (approx. 700 signals per list).
- Process:
 - Check-in of different signal lists
 - Capturing event data
 - Analysis of event data for process evaluation and determination of product metrics.

Process Measurement and Analysis: Results of the Feasibility Study

Process Evaluation with ProM*

Project monitoring and observation based on event data

16

^{*}ProM: Process Mining Workbench: http://prom.win.tue.nl/tools/prom6/

Added-Value Contributions on three Levels

Added-value application examples

- Interact with project-level engineering knowledge and data.
- Engineering Cockpit.
- Use Case "Signal Deletion with Tickets".
- Efficient change conflict resolution.
- Semantic integration on project level
 - Project-level concepts.
 - Mapping to tool concepts.
- Technical integration of tools
 - Engineering tools.
 - Infrastructure, Security.
 - Application-specific components.

VIENNA

Prototype Implementation: Engineering Cockpit

In distributed (automation) engineering projects ...

- Data sets of several engineering groups evolve concurrently, often without projectwide version management and progress tracking.
- Lead engineers and managers get a clear picture only shortly before project milestones, seeing risks unnecessarily late.
- Our prototype solution will provide engineers and managers with
 - a platform to organize and perform specific inter-domain and inter-tool tasks.
 - means to collaborate efficiently within the engineering team.
 - integrated data on project progress and risks as soon as the engineer groups check in their local data sets to allow adjustments early.

VIENNA

18

Prototype Implementation: Engineering Cockpit – Management View

Conclusion and Further Work

- Automation systems engineering projects
 - Contributions from several engineering disciplines
 - Need for version management across semantically heterogeneous data models in engineering tools and projects
- Automation Service Bus (ASB) and Engineering Database (EDB) concept enables
 - Version management
 - Change & conflict detection and resolution
 - Integrated quality assurance activities
- Further research work
 - Identify new use cases from heterogeneous application domains.
 - Identify candidate industry partners for research prototype development.

BACKUP

Automation Service Bus (ASB)

Goal: Approaches for the integration of software tools in automation engineering.

- Technical Integration: Engineering Service Bus (1), Control Service Bus (2).
- Semantic Integration: Engineering Database (3).
- Flexible integration of SCADA (4) with data analysis/simulation (5).
- Defect detection approaches for design time (6) and run time (7).