

## Software Process Improvement Initiatives based on Quality Assurance Strategies: A QATAM Pilot Application

<u>Dietmar Winkler</u><sup>1</sup>, Frank Elberzhager<sup>2</sup>, Stefan Biffl<sup>1</sup>, Robert Eschbach<sup>2</sup>

<sup>1</sup> Christian Doppler Laboratory SE-Flex AS, Institute of Software Technology and Interactive Systems, TU Vienna

<sup>2</sup>Fraunhofer Institute of Experimental Software Engineering (IESE)

dietmar.winkler@tuwien.ac.at http://cdl.ifs.tuwien.ac.at

## **Background & Motivation**



Common Goals of software development practice:

- High product quality across all phases of software development.
- Optimization of resource allocation and project planning.
- Implementation of process improvement initiatives.
- Process Improvement Initiatives include

- Application of appropriate software processes according to the project context and application domain.
- Constructive approaches to create deliverables, e.g., engineering documents, software code, and test cases.
- Analytical approaches to verify and validate deliverables, e.g., reviews and testing.
- Quality assurance strategies can help focusing on most promising (bundles of) QA activities.
- QATAM (Quality Assurance Tradeoff Analysis Method) based on SEIs ATAM can enable systematic development and evaluation of QA strategies in a given company and project context.

## **Quality Assurance Strategies**



- Bundle of constructive and analytic quality assurance approaches support efficient project planning and execution.
- Observed need for efficient quality assurance strategies:
  - Aligned with the project context and software process.
  - Bundling methods to increase efficiency of project execution (e.g., applying early requirements inspections and derive test cases on acceptance test cases)
  - Ensuring overall high product quality (across all phases of development).
  - Foundation for project planning and resource allocation.



## **Research Questions & Solution Approach**



#### **Research Questions:**

- How can we derive an appropriate quality assurance strategy addressing "valuable" project characteristics and quality attributes?
- How can we evaluate quality assurance strategies?

#### Solution Approach:

- Quality Assurance Tradeoff Analysis Method (QATAM)
- Pilot application in an medium-scale software development company.



Institut für Softwaretechnik und Interaktive Systeme

## **QATAM Evaluation Process**



Based on SEI's Architecture Tradeoff Analysis Method (ATAM) proposed by Kazman *et al*, 1999.

Qualitative, scenario-based analysis approach to systematically evaluate software architecture variants.

| Step                                                                          | Input                                                                                                     | Output                                                                                        |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1.QA Strategy Development                                                     | Current practices;<br>Involved stakeholders                                                               | List of comprehensive Candidate<br>QA strategies                                              |
| 2. Scenario Brainstorming                                                     | Context information                                                                                       | Set of scenarios (grouped by stakeholder groups)                                              |
| 3.Pre-selection of possible QA strategies                                     | Set of QA strategies                                                                                      | Refined set of QA strategies                                                                  |
| 4. Determination of scenario coverage                                         | Refined set of QA strategies & set of grouped scenarios                                                   | Estimated scenario coverage<br>regarding each QA strategy                                     |
| 5. Prioritization of scenarios regarding risk and relevance                   | Set of grouped scenarios                                                                                  | Prioritized set of grouped<br>scenarios                                                       |
| 6.Evaluation of QA strategies                                                 | Refined set of QA strategies & prioritized set of grouped scenarios                                       | Evaluated QA strategies regarding<br>stakeholder scenario groups and<br>prioritized scenarios |
| 7.Determination of success factors                                            | Refined set of QA strategies & relevant scenario(s)                                                       | Analyzed QA strategies regarding<br>determined success factors of<br>relevant scenario(s)     |
| 8. Trade-off analysis & determination of one "best-<br>practice" QA strategy. | Refined set of QA strategies,<br>Results of strategy evaluation,<br>results of success factor<br>analysis | One best-practice QA strategy                                                                 |

. . . . . . . . . . . . . . . . . .

# **Pilot Application (1)**



- Context is a medium-scale software development organization.
- Focus of improvement: Change Request Handling
- Company need: The improvement initiative has to focus on frequent changing, incomplete and error prone requirements definitions which lead to a high effort in terms of quality, development duration and cost.
- Common goals of the industry partner are
  - a) Improvement of software development practices with systematic QA activities.
  - b) High stakeholder acceptance of improvement initiatives.
- Step 1: QA Strategy development
  - As-it-is Analysis: simplified V model approach

Candidate strategies include

- Method change / extensions, e.g., additional reviews, testing approaches
- Process change, e.g., V-Modell XT, Scrum application.
- Strategy development is based on experts/experience and/or empirical evidence.

# **Pilot Application (2)**



- Step 2: Goal/Scenario Brainstorming and Step 5: Prioritization of Goals/Scenarios
  - Based on brainstorming/prioritization processes, e.g., supported by EasyWinWin.
  - Definition of measurement attributes for evaluating strategy performance.
- Step 3: Pre-Selection of candidate QA strategies
  - Determined by company regulations and management decisions.
  - Focus on the 2-3 most promising candidate strategies to limit evaluation effort.
- Step 4: Determination of scenario coverage and Step 6: Evaluation of QA Strategies
  - Workshop for scenario coverage elicitation (% of goal/scenario coverage).
  - Evaluation of goals and scenarios according to (a) risk/priority and (b) stakeholders affected by the goal/scenario.
  - Average coverage of goal/scenario coverage per category.
- Step 7: Determination of success factors

- Based on success criteria e.g., according to Stelzer et al. 1999.
- Selected criteria from our industry partner, e.g., strategy performance, effort of implementation, and impact on later stages of development.
- Step 8: Trade-off analysis & determination of one "best-practice" QA strategy.
  - Based on the evaluation results, an improvement strategy "additional reviews" was selected as first step of an overall improvement initiative.

# **Summary & Further Work**



#### Summary

- QA strategies enable a comprehensive view on the project by using a set of agreed (bundles of) QA approaches.
- QATAM enables a systematic evaluation according to project and company needs.
- Involving related stakeholders strengthen improvement initiative acceptance.
- "Improvement of small steps" is the most applicable approach in industry context.

#### Lessons Learned:

- Limiting the number of candidate strategies increase efficiency and effectiveness of strategy evaluation.
- Focus on domain specific QA strategies.
- Application of expert estimation and empirical evidence of methods support (automation-supported) strategy development.

#### **Future work**

8

- Automating the mapping process of project context and method characteristics to generate candidate strategies.
- Refinement of the QATAM evaluation approach based on initial lessons learned.
- Empirical studies on QATAM application in industry context.





### Software Process Improvement Initiatives based on Quality Assurance Strategies: A QATAM Pilot Application

Dietmar Winkler<sup>1</sup>, Frank Elberzhager<sup>2</sup>, Stefan Biffl<sup>1</sup>, Robert Eschbach<sup>2</sup>

<sup>1</sup>Christian Doppler Laboratory SE-Flex AS, Institute of Software Technology and Interactive Systems, TU Vienna <sup>2</sup>Fraunhofer Institute of Experimental Software Engineering (IESE) http://cdl.ifs.tuwien.ac.at Dietmar.Winkler@tuwien.ac.at

Institut für Softwaretechnik und Interaktive Systeme

### **Backup Slides**

. .

. . . . . . . .

. . .



### **Strategy & Scenario Brainstorming**



- Step 1: QA Strategy development
  - As-it-is Analysis (simplified V model approach)
  - Method change / extension, e.g., additional reviews, testing approaches
  - Process change, e.g., V-Modell XT, Scrum application.
- Step 2: Scenario Brainstorming
  - Goal and Scenario Brainstorming process based on EasyWinWin.
  - Definition of measurement attributes for evaluation purposes.

| No | Stakeholder | Goals/Scenario                                        | Priority | Measurement                                |
|----|-------------|-------------------------------------------------------|----------|--------------------------------------------|
| C1 | Customer    | Measurement of performance                            | В        | Response time of web services              |
| C2 | Customer    | Usability from end user view                          | А        | Questionnaire for User Testing             |
| D1 | Developer   | Change Request Handling                               | В        | Process Assessment                         |
| D2 | Developer   | Frequent Changing Requirements                        | A        | Number of change requests per<br>time-unit |
| D3 | Developer   | Completeness & correctness of functional requirements | А        | Number of defects detected                 |
| D4 | Developer   | Requirements traceability enabled                     | A        | Coverage of requirements by test<br>cases  |
| M1 | Management  | Defect detection during development and test          | А        | Number of defects detected                 |
| M2 | Management  | Cost reduction & faster component development         | А        | Project tracking                           |

### **Pre-Selection & Scenario Coverage**



- Step 3: Pre-Selection of candidate QA strategies
  - Determined by company regulations and management decisions

|     | Strategy              | Change category | Comments                                                  | Decision   | Selected |
|-----|-----------------------|-----------------|-----------------------------------------------------------|------------|----------|
| CS1 | As-it-is              | No change       | No improvement of the current process                     | Evaluation | Yes      |
| CS2 | Additional Reviews    | Method          | Additional effort for implementation                      | Evaluation | Yes      |
| CS3 | Increased Test Effort | Method          | Developer self-test are mandatory (management guidelines) | No option  | No       |
| CS4 | V-Modell              | Process         | High implementation effort                                | No option  | No       |
| CS5 | Agile Approach        | Process         | Short iterations and fast response times                  | Evaluation | Yes      |

- Step 4: Determination of scenario coverage
  - Workshop for coverage determination
  - Involvement of all related stakeholders

| No | Goals/Scenario                                           | Priority | CS 1: As-it-is | CS 2: Reviews | CS 5: Agile |
|----|----------------------------------------------------------|----------|----------------|---------------|-------------|
| C1 | Measurement of performance                               | В        | 50             | 50 (~)        | 50 (~)      |
| C2 | Usability from end user view                             | А        | 30             | 50 (+)        | 70 (+)      |
| D1 | Change Request Handling                                  | В        | 80             | 80 (~)        | 70 ()       |
| D2 | Frequently Changing Requirements                         | А        | 10             | 10 (~)        | 80 (+)      |
| D3 | Completeness & correctness of functional<br>requirements | Α        | 20             | 70 (+)        | 70 (+)      |
| D4 | Requirements traceability enabled                        | А        | 50             | 70 (+)        | 90 (+)      |
| M1 | Defect detection during development and test             | А        | 30             | 80 (+)        | 80 (+)      |
| M2 | Cost reduction & faster component develop.               | Α        | 30             | 50 (+)        | 80 (+)      |

### **Scenario Prioritization & Evaluation**



- Step 5: Prioritization of Scenarios regarding risk and relevance
  - Goal and Scenario Prioritization process based on EasyWinWin.
  - Involvement of related stakeholders.
- Step 6: Evaluation of QA Strategies
  - Evaluation of goals and scenarios according to (a) risk/priority and (b) stakeholders affected by the goal/scenario.
  - Mean value per category.

| Goals/Scenarios               | Priority | CS 1: As-it-is | CS 2: Reviews | CS 5: Agile |
|-------------------------------|----------|----------------|---------------|-------------|
| High Priority Goals/Scenarios | Α        | 28             | 55 (+)        | 78 (+)      |
| - Customer Scenarios          | А        | 30             | 50 (+)        | 70 (+)      |
| - Developer Scenarios         | А        | 27             | 50 (+)        | 80 (+)      |
| - Management Scenarios        | А        | 30             | 65 (+)        | 80 (+)      |

### **Success Factors & Final Decision**



• Step 7: Determination of success factors

- Based on success criteria according to Stelzer *et al.* 1999.
- Selected criteria, e.g., strategy performance, effort of implementation, and impact on later stages of development.

|                                       | Goals/Scenario                      | CS 1: As-it-is | CS 2: Reviews | CS 5: Agile | Comments                                |
|---------------------------------------|-------------------------------------|----------------|---------------|-------------|-----------------------------------------|
| Strategy Performance                  |                                     |                |               |             |                                         |
|                                       | - Effectiveness of defect detection | Low (-)        | High (+)      | High (+)    | Ability to identify defects             |
|                                       | - Efficiency of defect detection    | Low (-)        | High (+)      | High (+)    | No. of defects per effort unit          |
| Effort of implementation /application |                                     |                |               |             |                                         |
|                                       | - Effort (implementation)           | n/a            | Medium (+)    | High (-)    | Effort for strategy implementn.         |
|                                       | - Effort (application)              | Low (+)        | Medium (+)    | Medium (+)  | Effort for strategy application         |
| Impact on later process phases        |                                     |                |               |             |                                         |
|                                       | - Reduced defects in later phases   | Low (–)        | Medium (+)    | Medium (+)  | Expected benefits during<br>development |
|                                       | - Reduced customer bug reports      | Low (-)        | High (+)      | High (+)    | and maintenance                         |

- Step 8: Trade-off analysis & determination of one "best-practice" QA strategy.
  - Based on the results, the Candidate Strategy 2 (additional reviews) was selected as most valuable strategy for the first step of the improvement initiative.