—I
P
-

Test-Driven Automation:
Adopting Test-First Development to Improve
Automation Systems Engineering Processes

Dietmar Winkler Stefan Biffl Thomas Ostreicher

Institute of Software Technology and Interactive Systems,
Vienna University of Technology

dietmar.winkler@tuwien.ac.at
http://gse.ifs.tuwien.ac.at

Institut fir Softwaretechnik und Interaktive Systeme

=]
P
-

Motivation n

= Added value of automation systems with software components:
— Required flexibility of automation systems.
— Increased complexity of software components in automation systems products.

— Increased product quality by systematic software engineering approaches during
development and operation.

= QObservations in Automation Systems Development Practice:

— Functional, testing, and diagnosis aspects are scattered over the code and hinder
efficient (automated) systems testing.

— Limitations in a systematic development process approach.

= Challenges & Goals:

— Need for functional, testing, and diagnosis aspects during development and
operation within a hierarchical systems design.

— Efficient (automated) testing strategies.
— Need for flexible and systematic systems development processes.

— Application of Best-Practices learned from business IT software development in
the automation systems domain (e.g., test-first approach and model application).

Institut fir Softwaretechnik und Interaktive Systeme

Test-First Development in

Business IT Software Development

Test-Driven Development Steps:
Think. (a) selection of new requirements and (b) test case

1.

2.
3.

definition.

Red. Implementation and execution of test cases (failed).

Green. Implementation of functionality and test case execution

until all tests are successful.

Refactor existing code without modifying functional behaviour

and test case execution. Continue at step 1.

Continuous Integration and Test:
Frequent test runs

Immediate Feedback on test
results (e.qg., daily builds)
Efficient regression testing.
Automation and Tool support

Requirements and Test Case Implementation and
Specification Generation Test Case Execution

ol

Test Run during Continuous Integration
Run 1 Run2| Run3

Requirement B Test Case B1

Requirement Ai Test Case A1
Test Case A2

Test Case B2

Requirement Ci Test Case C1
Test Case C2

‘J%

00000 6.
000006
000006
00006

000066,

III I nStItUt

ur Softwaretechnik und Interaktive Systeme

=]
P
-

Research Approach n

= Need for flexible systems development and efficient testing approaches in the
automation systems domain lead to:

— Strict separation of functional, testing, and diagnosis aspects.
— Application of test-first development to increase testing efficiency.

= Enriched automation systems development by systematic software engineering
approaches, applying
— Lessons learned from business IT software development.
— Test-first development (TFD) in the automation systems domain.
— Model-support to foster “test-first” in systematic systems development.

= Solution approach:
— Concept for a test-driven automation component (TDA component).
— Test-First development based on a systematic process approach (W-Model).
— First evaluation in a prototype study: bottle sorting application.

Institut fir Softwaretechnik und Interaktive Systeme

Concept of a TDA Component

=]
P
-

VIENNA

= Strict separation of functional, diagnosis, and test components.
= |nteraction via defined interfaces within the TDA component and to lower-level and

upper-level TDA components.

= Hierarchical systems design of typical automation systems.

Component structure:
= Logic: Represents functional aspects.

= Diagnosis: (a) Pass messages from logical aspects to lower-level components and (b)

monitor systems responses.

= Test: Set system in a certain state (functional behaviour) including tests of systems

states which should not be reached (e.g. an error state).

Al (Functional) DI (Diagnosis)

Tl (Test)

——

I

A Logic <«—>»|D Diagnosis ([« ——|T
-7 - s/
= K
Al DI Tl Al HBrH T
Valve r Sensor }‘

Institut fir Softwaretechnik und Interaktive Systeme

—I
P
-

Test-First in Software Development n

= Based on the W-Model (Baker et al, 2007) or V-Modell XT (Biffl et al, 2006).

Iteration 1
Iteration 2
Iteration n
Requirements Requirements Systems and
Definition Acceptance Tests
Generation
Funct. & Technical Architecture & Integration _
, Integration Tests
Systems Design
Test Case
Generation
Component
Com_p_one_nt Unit Tests
Specification
Test Case
Generation
Implementation of
Test-Driven Automation Components
TDA Component

Automation Function Testing Function Diagnosis Function

Institut fir Softwaretechnik und Interaktive Systeme

Test-Levels in TDA

= Based on the W-Model focusing on
— Requirements based test cases.
— Test cases based on architecture, design and integration.
— Component-based test cases.

= Test case definition on every level
— Help Identifying success-critical issues on different levels.
— Addresses individual stakeholder groups.

Phase

Deliverables

Test Level

Stakeholders

Requirements Definition

Functional and Technical Systems
Design

Component Specification

Implementation of TDA Components

Use Cases

Component diagrams
State-Charts

State-Charts

Function Blocks

System [Acceptance Testing

Architecture / Integration
Testing

Component Testing

Developer Testing

Customer, Factory Setting

Engineering Team

Indiidual Engineer

Individual Engineer

Institut fir Softwaretechnik und Interaktive Systeme

o |
P
-

Sorting Application Prototype n

= Bottle sorting application to illustrate TDA component application.
= Basic requirements:

— ldentification of individual items on a conveyor.

— Stop at the appropriate loading station (stopper unit).

— Grapping of the item (vacuum gripper) and moving the item into a box.
= Component Structure.

Loading Station

=i

Handling unit |

\‘

Stopper unit ’

Positioning unit
D |
- \. ~
Horizontal ’ vertical ’ Vacuum
Linear axis Linear axis

gripper

' "
s v
N/
S
£

Institut fir Softwaretechnik und Interaktive Systeme

TDA Component Structure

= TDA component encapsulates functional, diagnosis, and test aspects.
— Automation control via automation interface (e.g., sorting call)

— Diagnosis: reporting the sorting status for (a) higher-level diagnosis components
and (b) handling unit automation control unit.

— Test control to set the system in a certain state, e.g., an error state (set/clear
gripper error). Observation of system response via diagnosis and system
reaction via automation aspects.

<<interface>>
Automation

+ sort() : void

<<interface>>
Diagnosis

Za
—

+ partsSorted() : int

S
—

—_

Automation Functionality

—I
P
-

VIENNA

<<interface>>
Test

+ clear GripperError(): void
+ setGripperError() : Void

£

—_

Diagnosis Functionality

Handling Unit

—_

Test Functionality

Institut fir Softwaretechnik und Interaktive Systeme

System Level Test

= Expected user behaviour on requirements level.
= Test Cases based on use case models and requirements from user perspective.

Advantages:

= Common “language” between
different disciplines.

= Early defect detection.

= Enhanced understanding of the
customer requirements.

= Test cases as vehicle for
communication between
stakeholders

Use Case: Handling Unit

Pick Up Part —
<include> _ -~ -
P Gripper
- <include>
_________ Release Part
Loading T~ -
Station <include>~~ < _ Position
Gripper B
Positioning
Unit

Mo Desc. Level

Type®

Pre-condition

Input Expected Result

Post-condition

1 |Sorting a Part | System MNC Position

2 Through-put System MNC

Position

Handling Unit in idle

Handling Unit in idle

Command to sort Handling Unit in idle
part Position and part sorted

Command to sot |Part has been sorted in
part less or equal than 10sec.

Handling Unit in idle
position

Handling Unit in idle
position

* Definition of test cases (type) according to (a) normal and regular cases (MNC), (b) special cases (SC), and error cases (EC).

Institut fir Softwaretechnik und Interaktive Systeme

—I
P
-

Integration & Unit Tests n

= State charts are common practices in the automation systems domain.
= Ability for automated code generation.

= Modelling of state charts including error states.

= Example: handling unit on component level.

State Chart: Handling Unit

.\

[error cleaned]

Move to Move to
Box Release Start
[grasped] [arrived [released]

at box]

[error]

Move to
Palette

[arrived at
palette]

[arrived at start]

Mo Desc. Level | Type® Pre-condition Input Expected Result Post-condition

1 |Gripper move to Pos Comp. MC Handling Unit idle Sort part Gripper moved to intended position S;EEE;IS in intended
. Handling Unit in idle Sort part Positioning Unit reports an error; Handling Unit in idle

2 Axis got stuck Comp EC FPosition error after 3s Handling Unit idle position

Institut fir Softwaretechnik und Interaktive Systeme

=]
P
-

Mocking with State Charts n

= Mocking is necessary to
— Simulate missing systems behaviour, i.e., code which is not available so far.
— Simulation of hardware behaviour.

— Simulation of error cases, i.e., system states which cannot be reached during
regular machine behaviour.

= State charts support modelling error states for testing purposes.

Handling
Unit

[Behavior] Grasp() {error = false}

release() {error = false}

setError() / error = true

Error Generation
[lon clearError() / error = false

Institut fir Softwaretechnik und Interaktive Systeme

Lessons Learned & Future Work n TU

= |ncreased flexibility and (software) complexity in the automation systems domain lead to
new challenges in software construction.

= Lessons learned from business IT software development can help systems engineers in
constructing high-quality products in short iterations.

= The concept of “Test-Driven Automation” applies:
1. Systematic software engineering process in the automation systems domain.

2. Test-first development on various levels of details to systematically increase product
quality in short iterations.

3. A strict separation of functional, test, and diagnosis aspects (TDA component
structure) enables systematic product development including interaction over clearly
defined interfaces.

= Lessons learned from a pilot application showed the expected benefits in a small show
case application.

= Future work includes
— Refining the process model and the TDA structure including diagnosis functions.
— Investigating the scalability of the TDA concept in a larger project contexi.

— Elaborating on a larger pilot application with industry partners with focus on data
collection to empirically investigate the expected benefits of the novel TDA concepit.

Institut fir Softwaretechnik und Interaktive Systeme

—I
P
-

Thank you for your Attention

VIENNA

Test-Driven Automation:
Adopting Test-First Development to Improve
Automation Systems Engineering Processes

Dietmar Winkler

Vienna University of Technology
Institute of Software Technology and Interactive Systems

http://gse.ifs.tuwien.ac.at
Dietmar.Winkler@tuwien.ac.at

Institut fir Softwaretechnik und Interaktive Systeme

=]
P
-

Referenzen n

. Baker P., Dai Z.R., Grabowski J.: Model-Driven Testing: Using the UML Testing Profile,
Springer, 2007.

. Beedle M., Schwaber K.: Agile Software Development with Scrum, Prentice Hall, 2008.

: Biffl S., Winkler D., H6hn R., Wetzel H.: Software Process Improvement in Europe: Potential of
the new V-Modell XT and Research Issues, in Journal Software Process: Improvement and
Practice, Volume 11(3), pp.229-238, Wiley, 2006.

. Damm L.-O., Lundberg L.: Quality Impact of Introducting Component-Level Test Automation
and Test-Driven Development, Proc. EuroSPI, 2007.

. Drusinksy D.: Modeling and Verification using UML Statecharts, 2006.

. Duvall M.P., Matyas S., Glover A.: Continuous Integration: Improving Software Quality and
Reducing Risk, Addison-Wesley, 2007.

- Karlesky M., Williams G.: Mocking the Embedded World: Test-Driven Development,
Continuous Integration, and Design Patterns, Proc. Emb. Systems Conf, CA, USA, 2007.

- Sunder C., Zoitl A, Dutzler C.: Functional Structure-Based modelling of Automation Systems,
Jounal of Manufacturing Research, 1(4), pp405-420, 2007.

. Vyatkin V., Christensen J.H., Lastra J.L.M.: OOONEIDA: An Open, Object-Oriented Knowledge
Economy for Intelligent Industrial Automation, IEEE Trans. on Industrial Informatics, vol. 1, pp.
4-17, 2005.

. Zhang W., Diedrich C., Halang W.A.: Specification and Verification of Applications Based on
Function Blocks, Computer-Based Software Development for Embedded Systems (LNCS
3778), Springer Verlag Berlin Heidelberg, pp. 8-34, 2005.

Institut fir Softwaretechnik und Interaktive Systeme

