
. Institut für Softwaretechnik und Interaktive Systeme

Siemens Dissertation Scholarship of TU Vienna, Faculty of Informatics

Improving Agile Practices with
Integrated Quality Assurance Methods

Selected Results from a Family of Empirical Studies

Dipl.-Ing. Dietmar Winkler

Institute of Software Technology and Interactive Systems,

Vienna University of Technology

dietmar.winkler@tuwien.ac.at

http://qse.ifs.tuwien.ac.at/~winkler

. Institut für Softwaretechnik und Interaktive Systeme

Scholarship

Background

� Supported research stays at international research institutions to improve research
contacts and emphasis on the internationalization of the individual research work.

� Sponsored research stay up to 4 months to finish the PhD-work.

Focus of my prior research work:

� Software processes (Agile Software Development, V-Modell XT), Agile Practices (e.g.,

Pair Programming) & Analytical Quality Assurance Methods (e.g., Inspection & Testing).

� Based on this work several papers were published at international conferences on
software engineering and empirical software engineering.

Selection of the research organization

� Fraunhofer Institute for Empirical Software Engineering, Kaiserslautern;

IESE, head Prof. Dr. D. Rombach; http://www.iese.fhg.de.

� Leading international institute in applied software research and technology transfer

(Number 1 institution in Europe and number 5 worldwide) [JSS ranking].

� Major competences of IESE are software engineering, quality assurance, and empirical

software engineering.

Special thanks to

. Institut für Softwaretechnik und Interaktive Systeme

Table of Contents

� Introduction

– Motivation and Background

– Related Work

– Research Approach

� Best Practice Software Inspection

– Family of Experiments to identify Best-Practice Inspection.

– Results of a series of empirical studies.

� Bundling Agile Practices and Systematic Quality Assurance Activities

� Evaluation of Integrated Pair Programming

– Design of the controlled experiment.

– Evaluation results.

� Summary and Future Work

. Institut für Softwaretechnik und Interaktive Systeme

Motivation & Background

Major goal in software and systems Engineering:

� Development of high-quality software products within time, cost and quality constraints

to achieve a high level of customer satisfaction.

Challenges and initial situation:

� Increasing complexity of software and systems products.

� Frequent changing customer requirements.

� Need for fast delivery of high-quality (and extended) software products.

� Software Product and Process Improvement (SPPI).

� etc.

Question:

� How can we handle these challenges?

. Institut für Softwaretechnik und Interaktive Systeme

Solution Approaches

These challenges require professional approaches for project planning and execution:

� Software processes help to plan and execute projects systematically.

– Traditional Software Processes (e.g., V-Modell XT, RUP and Waterfall).

– Agile Software processes (e.g., SCRUM and eXtreme Programming).

� Constructive methods like agile practices (e.g., Pair Programming) support engineers in

constructing software products in an effective and efficient way.

� Analytical methods (e.g., Software inspection) aim at improving software products and
enable an assessment of those products.

Nevertheless:

� Constructive and analytical methods provide selective support over the project life-cycle,

i.e., construction of individual software products and verification and validation of

individual products.

� Bundling constructive and analytical methods can bundle benefits from both disciplines

and can lead to synergy effects.

e.g., Software requirements inspection leads to defect detection lists (derived from
inspection approaches) and can be reused for test-case generation on requirements level

(e.g., for acceptance testing purposes).

. Institut für Softwaretechnik und Interaktive Systeme

Agile Software Processes: SCRUM

� Agile approaches respond to frequent changing requirements due to a high degree of

customer interaction and enable a fast delivery of high-quality software products

(builds).

� SCRUM (Schwaber et al., 2007) is an agile software engineering process from project

management point of view.

Product Backlog:
Prioritized list of features

required by the customer

Sprint Backlog:
Features to be done this sprint.

Features are expanded into

smaller tasks

New Functionality
Is demonstrated at the end

of each sprint.

Workday:
One Day

Sprint:
One Month

Every Day, a 15-min meeting is held, and

the SCRUM Master asks 3 Questions:

1) What have you accomplished since the

last meeting?

2) Are there any obstacles in the way of

meeting your goals?

3) What will you accomplish before the

next meeting?

Develop

& Test

Adjust
Review

Wrap

PREGAME
(Planning & System

Architecture)

SPRINT POSTGAME
(closure)

Benefits and contribution:

� Applicability to new software projects

and maintenance projects
� Snapshot of the development

process.

� Short iterations (monthly Sprints)
� Fast delivery of releases.

� Product backlog vs. sprint backlog

� response to changing requirements.

� Efficient self-organizing teams.

� Established software process in the

open source community.

. Institut für Softwaretechnik und Interaktive Systeme

Agile Practices: Pair Programming

� Pair Programming (PP) is an agile practice in eXtreme Programming and Scrum.

� PP involves two roles sharing a common working environment:

– Driver: implementation role.

– Observer: supporting role.

– Roles may change frequently.

Benefits and contribution:

� Increased productivity and product quality.

� Learning in Pairs (e.g., supervisor, introduction
of new team members).

� Applicability for other software engineering

activities e.g., Pair Reviews, Pair Testing, etc.

Basic references:

� Williams et al., 2000, 2002.

� Cockburn et al, 2001.

. Institut für Softwaretechnik und Interaktive Systeme

Challenges with Pair Programming

� In traditional Pair Programming the observer role performs implicit quality assurance
tasks (e.g., continuous reviews).

� This implicit quality assurance is

� not well defined,

� not traceable and

� not repeatable.

� Limitations of Pair Programming application: traditional pair programming is not
suitable for environments that need well-defined, traceable and repeatable quality
assurance (e.g., security-related application domains).

There is a need for

� Systematic quality assurance activities within a pair programming team.

� Software Inspection is a promising approach for pair programming extension.

Question:

� Which Software Inspection variant is most suitable for this integration purpose?

� How can we introduce a systematic software inspection approach?

� How can we show the benefits?

. Institut für Softwaretechnik und Interaktive Systeme

Software Inspection Variants

Software Inspection

� is a static analysis technique to verify

quality properties of software.

� does not require executable code

(applicable to design documents).

� focuses on defect types and location in

the inspected object.

� Active guidance of inspectors with reading

techniques and guidelines (how to

traverse a software document).

� Promises to support learning (structured

process which is repeatable and

traceable)

� Team meetings vs. Nominal teams.

Winkler, 2008: Improvement of Defect Detection with Software Inspection Variants:

A Large-Scale Empirical Study on Reading Techniques and Experience, VDM Verlag, 2008.

� Software Inspection aims at improving software products in early phases of development.

� Early detection and removal of defects, e.g., in the design phase, helps increase software
quality and decrease rework effort and cost.

References: Fagan 1976, Gilb 2000, Biffl 2001, Winkler, 2008.

. Institut für Softwaretechnik und Interaktive Systeme

Reading Techniques

� Reading Techniques aim at supporting inspectors during the inspection process by

providing guidelines for systematic reading.

� Various selected reading technique variants

– Ad-hoc: no guidance

– Checklist based reading: sequential reading according to domain/project specific

checklist-items.

– Scenario Based reading: scenarios describe workflows from different perspectives,

e.g., designer, tester, and user, by providing a sequence of steps to address

individual business cases.

– Usage based reading: use cases define individual business cases on requirements
level (based on UML). Use cases can be the basis for a model-driven approach.

� Guidance might help observers in systematically support the driver in developing new

pieces of software (enabling traceability and repeatability).

� Which inspection / reading technique variant might be most valuable in a given context?

. Institut für Softwaretechnik und Interaktive Systeme

Research Approach

� Step 0: Systematic Literature Review on Pair Programming and Software Inspection.

� Step 1: Identifying Best-Practice Software Inspection in a given context by conducting

a family of experiments.

� Step 2: Construction of an “Integrated Pair Programming Approach” (IPP).

� Step 3: Evaluation of IPP in a given context to show its impact on quality assurance

metrics, e.g., defect detection capability.

. Institut für Softwaretechnik und Interaktive Systeme

Table of Contents

� Introduction

– Motivation and Background

– Related Work

– Research Approach

� Best Practice Software Inspection

– Family of Experiments to identify Best-Practice Inspection.

– Results of a series of empirical studies.

� Bundling Agile Practices and Systematic Quality Assurance Activities

� Evaluation of Integrated Pair Programming

– Design of the controlled experiment.

– Evaluation results.

� Summary and Future Work

. Institut für Softwaretechnik und Interaktive Systeme

Family of Inspection Experiments

� General Goal: Identification of a Best-Practice Inspection Variant in a given context.

� Quality Attribute / Metric: Defect detection capability (effectiveness and efficiency) of

different reading technique approaches.

� 3 Large-Scale Empirical Studies (Controlled Experiments) in Academic Environment

� > 160 student participants each; inspection duration appx. 3 hours.

� Provided Material:

– Requirements Specification,

– USE case models,

– Individual guidelines for defect detection tasks.

– Supporting material (e.g., questionnaires) & online data capturing tools.

� Two different applications in the area of administrative software systems:

(a) Ticket selling system and (b) Taxi management system.

� Variation points:

– Defect types and defect severity classes.

– Document locations (business case descriptions, architecture and design, code).

. Institut für Softwaretechnik und Interaktive Systeme

Selected Results: CBR vs. SBR variants

� Focus: Checklist-based reading technique (CBR) vs. Scenario-Based reading

techniques from different perspectives (SBR-Designer, SBR-Tester, SBR-User)

� Main results:

– Scenarios and perspectives support defect detection in related document parts
(e.g., SBR-U identifies most defects in the Business Case Description and SBR-D

was most effective in the architecture and design part).

– Lower qualified inspectors are more effective and efficient using the scenarios and
perspectives.

– Different reading techniques: CBR is useful for less important defects; perspectives

and scenarios spot on more important and critical defects.

– SBR inspectors are more efficient (need on average less time for inspection)

because of the active guidance of the reading technique approach.

� Next Step: Improving SBR with focus on Use Cases => UBR.

� Publication: D. Winkler: „Improvement of Defect Detection with Software Inspection Variants: A Large-Scale Empirical

Study on Reading Techniques and Experience”, VDM Verlag, ISBN: 3836470136 , 2008.

. Institut für Softwaretechnik und Interaktive Systeme

Selected Results: CBR variants vs. UBR

� Focus: Active guidance of inspector regarding defect detection performance.

� Checklist-based RT variants (CBR) vs. Usage-Based reading techniques.

– CBR-Variants:

• Generic checklist (CBR-gc): pre-defined set of checklist items.

• Tailored checklist (CBR-tc): tailoring of requirements according to individual and

subjective importance (from reviewers point of view).

– UBR: Expert prioritization of Use-Cases.

� Main: Results

– UBR performance is best for critical and important defects (significant differences)

– Effectiveness & Efficiency: UBR > CBR-tc > CBR-gc.

– Active guidance support inspection proceeding (UBR and CBR-tc).

– UBR expert know-how has significant effects on defect detection rates.

� Next Step: Investigating UBR variants (reduction of preparation effort).

� Publication: D. Winkler, S. Biffl, B. Thurnher: „Investigating the Impact of Active Guidance on Design Inspection”, 6th

International Conference on Product Focused Software Process Improvement (PROFES), Oulu, Finland, June 2005.

. Institut für Softwaretechnik und Interaktive Systeme

Results: UBR variants vs. CBR

� Focus: Impact of expert ranked Use Cases on defect detection performance.

� Checklist-based RT variants (CBR) vs. Usage-Based reading techniques.

– UBR-Variants:

• Usage based reading (UBR): expert prioritized use cases.

• UBR with individual use case prioritization (UBR-ir).

– CBR: stepwise application of a context-specific checklist.

� Main: Results

– UBR performance (with expert ranking) is best for all defect severity classes.

– The performance advantage of UBR is greatest critical defects.

– Effectiveness: UBR > UBR-ir > CBR.

– Efficiency: UBR = UBR-ir > CBR.

– UBR expert know-how has significant effects on defect detection rates.

� UBR with expert ranking turned out to be the most effective and efficient approach for
defect detection => Candidate for integration in Pair Programming.

� Publication: D. Winkler, M. Halling, S. Biffl: „Investigating the Effect of Expert Ranking of Use Cases for Design

Inspection“, Proceeding 30th IEEE Euromicro Conference, Rennes, France, September 2004.

. Institut für Softwaretechnik und Interaktive Systeme

Table of Contents

� Introduction

– Motivation and Background

– Related Work

– Research Approach

� Best Practice Software Inspection

– Family of Experiments to identify Best-Practice Inspection.

– Results of a series of empirical studies.

� Bundling Agile Practices and Systematic Quality Assurance Activities

� Evaluation of Integrated Pair Programming

– Design of the controlled experiment.

– Evaluation results.

� Summary and Future Work

. Institut für Softwaretechnik und Interaktive Systeme

Bundling Benefits …

Best-Practice Software Inspection

� Applicable in all phases of the

Software Life-Cycle.

� Systematic quality assurance activity.

� UBR is a well-investigated reading

technique approach.

� Focus on critical defects first.

� Active guidance through guidelines

and prioritized use-cases.

� Application of use cases and

scenarios from requirements
documents in a pre-defined order

(prioritized by a group of experts) to

design documents.

Pair Programming

� Flexible and agile constructive practice.

� Embedded within an agile software

development process.

� Applicable for development and

maintenance projects.

� Pair Learning.

� Team activity (driver & observer)

� Including implicit quality assurance

activities (need for traceability and

repeatability).

� Test-Driven Development approach.

� Defect detection in early products as

by-product of code construction.

. Institut für Softwaretechnik und Interaktive Systeme

Integrated Pair Programming (IPP)

Expected Benefits:

� Flexible (agile) software construction including systematic product quality improvement.

� Defect detection (Best-Practice Inspection) based on requirements and code.

� Enhanced learning effects.

� Systematic and traceable quality assurance activities.

� Enhanced tasks and responsibility for the observer role.

� Application of prioritized use cases according to business value contribution.
D
e
v
e
lo
p
m
e
n
t

P
a
c
k
a
g
e

. Institut für Softwaretechnik und Interaktive Systeme

Table of Contents

� Introduction

– Motivation and Background

– Related Work

– Research Approach

� Best Practice Software Inspection

– Family of Experiments to identify Best-Practice Inspection.

– Results of a series of empirical studies.

� Bundling Agile Practices and Systematic Quality Assurance Activities

� Evaluation of Integrated Pair Programming

– Design of the controlled experiment.

– Evaluation results.

� Summary and Future Work

. Institut für Softwaretechnik und Interaktive Systeme

Design of the Controlled Experiment

� An experiment to investigate defect detection capability of best-practice inspection and

an integrated pair programming approach.

� Experiment process in 5 basic steps:

– (a) Participant selection, (b) experience collection, (c) experiment preparation for

participants, (d) study execution in two sessions including feedback after every

session, and (e) data submission.

� Study material:

– Textual requirements, prioritized use cases, source code fragments (partially

implemented), guidelines, experience and feedback questionnaires.

� Expert seeded defects:

– 60 reference defect spread over different document locations (different defect

severity classes and types).

– 29 critical, 24 important, 7 less important defects seeded in the design specification

and source code.

� 41 subjects (experiment participants): graduate students in a class on quality assurance

and software engineering (15 UBR, 26 pair programmers, i.e., 13 pairs).

. Institut für Softwaretechnik und Interaktive Systeme

Systems Overview: Taxi Management System

� System Overview

– Maintenance / evolution process for a commercial application.

– Taxi management system in two session (Central, Taxi).

� Software Artifacts

– Textual requirements: 8 pages, 2 component diagrams.

– Design document: 8 pages, 2 component diagrams and 2 UML charts.

– Use case document: 24 use cases and 23 sequence diagrams.

– Source code: some 1,400 LoC, 9-page description.

– Guidelines and questionnaires.

. Institut für Softwaretechnik und Interaktive Systeme

Research Questions

� General idea: Integrating inspection in PP leads to more structured defect detection

approaches, improves overall defect detection capability, and software product quality.

1. Hypotheses for natural work units (individual inspectors vs. pairs)

– H1.1: Effectiveness (PP) > Effectiveness (UBR): source code documents

– H1.2: Effectiveness (PP) < Effectiveness (UBR): natural-language text documents.

– Note: higher overall effort applying PP, because of different “team size” (2 persons)
and focus on code construction (defect detection as a by-product).

2. Similar hypothesis for “minimal teams” (2-person inspection teams vs. pairs).

3. Performance of nominal teams:

Do mixed teams perform better than “best-practice” teams?

. .24 Institut für Softwaretechnik und Interaktive Systeme

Results: Effectiveness of Working Units

� Effectiveness is the number of defects

found defects in relation to the number of

seeded defects.

� Focus on important defects (risk A+B)

and document location
(design document, source code).

� Effectiveness (PP) > Effectiveness (UBR)
for all defect severity classes and

document locations.

� Significant differences for

– Source Code and

– Design Document & Source Code.

� No significant differences for

– Design Document.

� The integrated PP approach outperforms

inspection according to source code defects.

� Smaller differences for design documents but

still advantages for PP.

1513 1513N =

Technique Applied

UBR-IndividualPP-Pair

E
ff

e
c
ti
v
e
n
e
s
s
,

C
la

s
s
 A

+
B

 [
%

]

100

80

60

40

20

0

Location

 Design Document

 Source Code

. .25 Institut für Softwaretechnik und Interaktive Systeme

Results: Effectiveness of “Minimal Teams”

� Comparability in team size � minimal teams.

– Pair: 2 persons (original work unit).

– UBR-MT: nominal 2-person team of

individual inspectors (randomly assigned).

� Focus on important defects (risk A+B)

and document location (design document,

design source code).

� Significant differences for

– Source Code.

� No significant differences for

– Design Document and

– Design Document & Source Code.

Technique Applied (Minimal Teams)

UBR-MTPP-Pair

E
ff
e
c
ti
v
e
n
e
s
s
,
C

la
s
s
 A

+
B

 [
%

]

100

80

60

40

20

0

Location

Design Document

Source Code

� PP outperforms effectiveness acc. to source
code defects.

� Advantages for UBR-MT according to design

document defects.

. .26 Institut für Softwaretechnik und Interaktive Systeme

Results: Team Composition

� Inspection and Pair Programming focuses on different defect types and defect locations.

� Thus, we expect an improved performance of mixed teams due to synergy effects.

� A “nominal team” is a collaboration of two or more members without interaction.

� Team building: continuous increase of effectiveness for up to 4 team members.

� Increasing effectiveness for design

documents (smaller gain including

additional pairs).

� Increasing effectiveness for source

code including additional pairs and
an almost constant value on inspector

integration up to 4 team members.

� PRRR: decreasing effectiveness acc.

to source code defects (additional

inspectors seems to hinder source
code quality)

60,0%

65,0%

70,0%

75,0%

80,0%

85,0%

90,0%

PR PP PRR PPR PRRR

Team Composition

E
ff

e
c

ti
v

e
n

e
s

s
,

C
la

s
s

 A
+

B
 [

%
]

all matched, design Risk AB, design

all matched, source Risk AB, source

Legend:
P … Pair Programming Team (2 persons); R .. Individual Reviewer;
e.g., PRR: 1 Pair Programming Team and 2 Reviewers

. Institut für Softwaretechnik und Interaktive Systeme

Table of Contents

� Introduction

– Motivation and Background

– Related Work

– Research Approach

� Best Practice Software Inspection

– Family of Experiments to identify Best-Practice Inspection.

– Results of a series of empirical studies.

� Bundling Agile Practices and Systematic Quality Assurance Activities

� Evaluation of Integrated Pair Programming

– Design of the controlled experiment.

– Evaluation results.

� Summary and Future Work

. Institut für Softwaretechnik und Interaktive Systeme

Summary

� Software Inspection is an analytical quality assurance technique for early defect

detection tasks in development projects. Reading techniques support inspectors by

providing guidance for inspection activities.

� Agile processes (e.g. Scrum) aim at providing flexibility to frequent changing

requirements and fast delivery of software products.

Agile practices (e.g., Pair Programming) is a team activity involving two roles: a driver
and observer. The observer performs implicit quality assurance tasks.

� Nevertheless, observer activities are not traceable, not auditable and not repeatable =>

need for systematic support of pair programming teams.

� UBR inspection turned out to be the most effective and efficient systematic quality

assurance activities in the area of software inspection.

� Integrated pair programming is a valuable approach for improvement software quality

(increased productivity and product quality by means of defect detection capability)

. Institut für Softwaretechnik und Interaktive Systeme

Practical Relevance & Future Work

Practical Relevance

� Results of series of experiments can provide a decision support for method selection and
application in industry context.

� Benefits from integrating methods and processes from different disciplines.

� An idea for a for a systematic improvement and evaluation of various methods,
e.g., software inspection variants.

Future work

� A more detailed investigation of the IPP approach with focus on various aspect of quality

assurance (e.g., productivity, quality of new software code, team performances and
individual qualification).

� Elaboration on the generalization of pair activities (e.g., pair reviews, pair testing, pair

design and architecture evaluation).

� Investigation of the applicability of the method in various domains and industry context to

enhance the validity of the results.

� Systematic quality assurance strategy evaluation is an follow-up project with Fraunhofer

IESE .

. Institut für Softwaretechnik und Interaktive Systeme

Thank you …

Improving Agile Practices with
Integrated Quality Assurance Methods

Selected Results from a Family of Empirical Studies

Dipl.-Ing. Dietmar Winkler
Vienna University of Technology,

Institute of Software Technology and Interactive Systems

Favoritenstr. 11/188, A-1040 Vienna, Austria

http://qse.ifs.tuwien.ac.at/~winkler

dietmar.winkler@qse.ifs.tuwien.ac.at

. Institut für Softwaretechnik und Interaktive Systeme

Selected Literature References

� S. Biffl: Software Inspection Techniques to support Project and Quality Management,

Shaker Verlag, 2001.

� A. Cockburn, L. Williams: the Cost and Benefits of Pair Programming, Extreme

Programming Examined, 2001.

� M.E. Fagan: Design and Code inspections to reduce errors in program development,

IBM Systems Journal, Vol. 15, No 3, 1976.

� T. Gilb, D. Graham: Software Inspection; Addison Wesley, 1993.

� K. Schwaber, T. Irlbeck: Agiles Projektmanagement mit Scrum, Microsoft Press, 2007.

� L.Williams, R.R. Kessler, W. Cunningham, R. Jeffries: Strengthening the Case for Pair

Programming, IEEE Software, 2002.

� L. Williams, R.R. Kessler: „All I really need to know about pair programming I learned in

Kindergarten“, Communications of the ACM, 2000.

� D. Winkler: “Improvement of Defect Detection with Software Inspection Variants: A

Large-Scale Empirical Study on Reading Techniques and Experience”, VDM Verlag,
2008.

. Institut für Softwaretechnik und Interaktive Systeme

Selected Web References

Selected Literature References (continued)

� D. Winkler, S. Biffl, B. Thurnher: „Investigating the Impact of Active Guidance on Design

Inspection”, 6th International Conference on Product Focused Software Process

Improvement (PROFES), Oulu, Finland, June 2005.

� D. Winkler, M. Halling, S. Biffl: „Investigating the Effect of Expert Ranking of Use Cases

for Design Inspection“, Proceeding 30th IEEE Euromicro Conference, Rennes, France,

September 2004.

Selected Web References

� S. Biffl, Dietmar W., D. Frast: „Qualitätssicherung, Qualitätsmanagement und Testen in

der Softwareentwicklung“, Skriptum zur Lehrveranstaltung, 2004.

http://qse.ifs.tuwien.ac.at/courses/skriptum/script.htm

� Software Engineering Body of Knowledge, http://www.swebok.org, 2004.

� Software Engineering – Best practices:
http://best-practice-software-engineering.blogspot.com/

� Software Engineering – Best practices:
http://best-practice-software-engineering.ifs.tuwien.ac.at/

