

An Empirical Investigation of Scenarios Gained and Lost in Architecture Evaluation Meetings

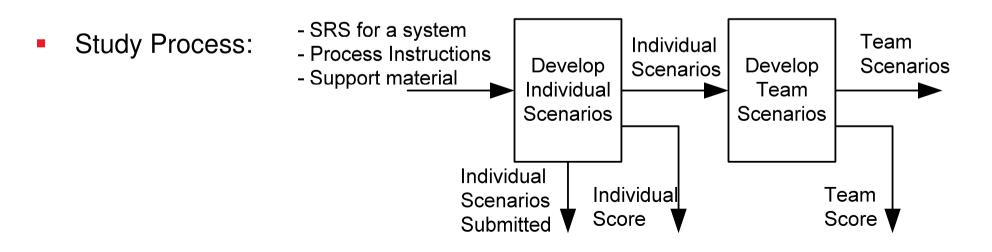
Dietmar Winkler¹, Stefan Biffl¹, Muhammad Ali Babar²

¹Institute of Software Technology and Interactive Systems Vienna University of Technology, Austria

²Lero, University of Limerick, Irland

Motivation & Background

- Software architecture is a success-critical issue in software projects.
- Defects and Changes can have a major impact on quality of delivered system, project duration, and cost.
- Issues related to Quality Attributes and Non-Functional Requirements (such as modifiability, performance, and maintainability) should be addressed early.


Basic Idea:

- Using benefits of Software Inspection Processes to identify Scenarios for Architecture Evaluation.
 - Scenarios can be used to address these Non-Functional Requirements.
 - Architecture evaluation supports project managers to consider quality sensitive scenarios in early software architecture decisions based on architecture evaluation processes like ATAM.
 - Process from Software Inspection: (a) Individual Scenario Brainstorming and (b) Team Meeting.

- Empirical study (controlled experiment) on a scenario elicitation workshop with focus on team meeting effectiveness.
- Key research questions:
 - How do guidance with change categories influence scenario brainstorming supported by these categories (top-down)?
 - What is the effect of scenario brainstorming performance of real and nominal teams regarding scenario gain and lost.

Study Material:

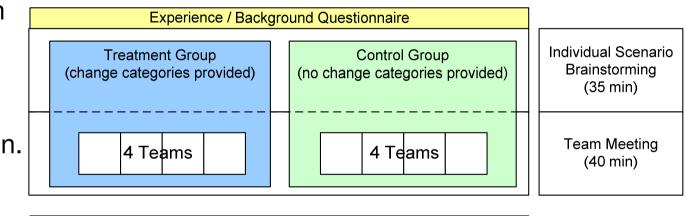
- Requirements Specification for a Web-Based Distributed Collaboration tool.
- Quality Attribute: Modifiability (over three years).
- 6 Software Change Categories provided to the treatment group (e.g., UI changes, communication tool changes, etc).

Variables:

- Independent Variables: Domain specific change categories of software changes.
- Dependent Variables: Frequency of scenarios: (a) individual, (b) real 3-person teams, (c) nominal (non-communicating) 3-person teams.

Randomized balanced design / Randomized group assignment.

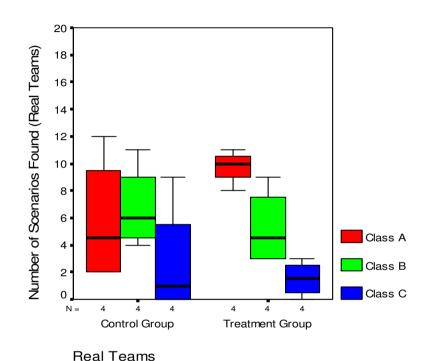
- Treatment group: change categories provided (12 participants), 4 teams.
- Control group: change categories not provided (12 participants), 4 teams.



Execution & Threats to Validity

Experiment Execution:

- Selection of participants, group assignment (treatment and control group) and (real) team composition.
- Briefing session (30 min).
- Experiment Execution
 - individual
 - team.
- Frequency-Based
 Scenario Classification.


Feedback Questionnaire

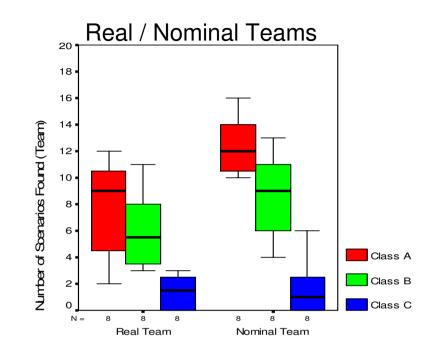
Validity Considerations:

- Internal validity: randomized subject assignment, Scoring schemes (frequency-based), Subject experience (students).
- External validity: classroom setting, similar background of participants, possible limited experience on the domain, short software requirements specification might not be typical in industry setting.

Scenario Reports by Real Teams

- Real 3- Person Teams (collaborative team meeting).
- Up to 90% more scenarios compared to individuals.
- Notable differences for all scenario classes of control and treatment group members:
 - More critical scenarios (class A)
 - Less class B and C scenarios
- But no significant differences.
- Top down scenario method (change categories provided) might provide a better guidance for critical scenarios.

Real Teams


Scenario	Control Group		Treatment Group	
Category	Mean	Std.Dev.	Mean	Std.Dev.
Class A	5.8	4.79	9.8	1.26
Class B	6.8	3.10	5.3	2.87
Class C	2.8	4.27	1.5	1.29

Gain / Loss of Scenarios

- Comparison of 3 person teams (similar team members): real vs. nominal teams
- Average total number of scenarios found:
 - Real Teams 15 scenarios.
 - Nominal Teams: 22 scenarios.
- Scenario gained / lost in team meetings:
 - Class A/B: more lost than gained.
 - Class C: similar number of gained/lost scenarios.
- Nominal teams
 - are more effective.
 - require less effort (no team meeting)
 - These results indicate that real team meetings hinder scenario elicitation.

Gain / Lost Scenarios						
Scenario	Gain		Loss			
Category	Mean	Std.Dev.	Mean	Std.Dev.		
Class A	3.0	2.14	7.0	2.73		
Class B	4.4	2.51	7.0	2.73		
Class C	2.1	3.00	1.6	2.20		

Conclusions and Future Work

Impact of Change Categories

- Change categories are used to guide reviewers in the scenario brainstorming process (top-down approach).
- Results show a significant improvement of identified critical (class A) scenarios.
- Scenario Gain / Loss in Team Meetings.
 - Less effort because there is no real team meeting.
 - Results show a higher number of scenario losses in a real team meeting for critical and important scenarios and a comparable number of gains/losses for less important scenarios.
 - Real team meetings seems to be questionable regarding the team meeting conducted in this study.
 - \rightarrow Future work is an ongoing analysis of impact factors on team meetings.
 - → Replication of the study to achieve a deeper insight in team meeting processes.