
. Institut für Softwaretechnik und Interaktive Systeme

Quality Assurance Activities to Support
Product Improvement

Dietmar Winkler

Vienna University of Technology
Institute of Software Technology and Interactive Systems

dietmar.winkler@qse.ifs.tuwien.ac.at
http://qse.ifs.tuwien.ac.at

. Institut für Softwaretechnik und Interaktive Systeme

Motivation

A major goal in Software Engineering (SE) is the construction of high-quality
and testable software products.
Important key approaches:
– Software processes (e.g., Life-Cycle Model, V-Modell XT, Scrum) define

the sequence of steps, when to build which products.
– Constructive methods, e.g., Model-Driven Development, Test-Driven

Development, and pair programming support creating new (pieces of)
software products (how to build).

– Analytical methods, e.g., inspection and testing help assessing product
and process quality (how to evaluate).

Quality Assurance (QA) supports engineers in evaluating products in every
stage of software development and must be an integrated part of the
development process.

Topics
Reviews and Inspections
Basics in Software Testing

2

. Institut für Softwaretechnik und Interaktive Systeme

Rework Effort During Project Progress

Requirements Design Coding Develop.
testing

Acceptance
testing

Operation

R
el

at
iv

e
co

st
 to

 fi
x

an
 e

rr
or

1 3-6x 10x

15-40x

30-70x

40-1000x

The cost of fixing errors escalates as we move the project towards field use.
From an analysis of sixty-three projects cited in Boehm Barry, „Software Engineering Economics“, Prentice-Hall,
1981

. Institut für Softwaretechnik und Interaktive Systeme

Improve Products Early

Software defects have a heavy impact on project quality, project duration
and project budget.
Rework effort increases the later a defect is detected within the project
course. (in the worst case defects can lead to project termination!)
Main goal is
– not to make any defects (seems to be very challenging)
– or to identify defects as early as possible (and remove them at the point

of their appearance)

Analytical QA approaches must be an integral part of the software
development process.
– Reviews and inspections aim at improving product and process quality

in all phases of software development with special focus on early
software development phases (no source code required)

– Testing is applicable to code documents (source code) and is typically
located in the implementation phase or later in the development life-
cycle.

. Institut für Softwaretechnik und Interaktive Systeme

Software Processes and
Quality Assurance

. Institut für Softwaretechnik und Interaktive Systeme

Reviews

A review is a formal and systematic analysis and assessment process to comment and
release any software product by a team of assessors.
[acc. to IEEE Std. 610]

Reviews focus on assessing products and processes qualitatively, e.g., reviewing
models and documents.

Different review types focus on different goals.

Clearly defined roles and assigned tasks.

. Institut für Softwaretechnik und Interaktive Systeme

Comparison: Different review types

Characteristics
Author presents the
inspection object acc to
the sequence of
execution
Release by the author.

Characteristics
Trained moderator
Reader presents the
inspection object
stepwise.
Release by the moderator

Characteristics
Trained moderator
Assessment team
provides recommendation
for the management

Participants
Author (= moderator),
assessor

Participants
Moderator, author,
assessor, writer, reader.

Participants
Moderator, author,
assessor, writer.

Goals
Identify defects and
product deviations
Training of users and
employees.

Goals
Identify important defects
Process improvement
Collect measurement

Goals
Identify strength and
weakness of the object
under review
(Process improvement)

Code Walk-ThroughSoftware Inspection
(formal review)

(Technical) Review

. Institut für Softwaretechnik und Interaktive Systeme

Review roles

Size of the review team depends on the project type and the project size.
Typical team size: 3-6 persons.
Involved roles:
– Moderator („keeper of the process“)

manages the review meeting (including preparation and rework)
– Reader („keeper of focus and pace“)
– Writer („preserver of knowledge“)

prepares the minutes during the review meeting
– Assessor („Reviewer“)

Comments on the inspection object.
– Author

Explanation of unclear situations, answers open questions.
BUT: no comments on the solution or defense of the solution.

– Typically the author must not be a member of the review team.
– Very important: Assess the product – NOT the author!

. Institut für Softwaretechnik und Interaktive Systeme

Basic Review Process

Planning:
Definition of objects, inspection goals
(exit criteria), pre-conditions (entry
criteria), participants, room, time.
Preparation meeting:
Introduction to the inspection object
(new and complex products).
Individual preparation
Review execution: common reading of
the artifact, recording of problems;
Note: in a review meeting problems
must be recorded, not fixed!
Rework: check of the recorded
problems and rework of the object.
Follow up: Review-Report, Feedback
Repetition of reviews are possible (e.g.,
in case of a high amount of reported
problems).

(1) Planning

(2) preparation
meeting

(3) individual
preparation

(4) review meeting

(5) rework

(6) follow-up

Reviews are supported by checklists.
Typical duration: 2h

. Institut für Softwaretechnik und Interaktive Systeme

Software Inspection

Software Inspection is a (more formal) systematic static analysis technique
to verify quality properties of software.

Supports structured quality improvement (repeatable, traceable and
auditable) in an efficient way.

Inspection does not require executable code
applicable to design specifications
defect detection in early stages of development.

Inspection focuses on different defect types (important or less important
defects) and locations in the inspected object.

Guidance of inspectors with reading techniques and guidelines (how to
read / traverse a software document).

A reading technique is a structured approach to support inspectors in their
reading approaches. i.e., how to traverse the document under inspection.

. .11 Institut für Softwaretechnik und Interaktive Systeme

Inspection and Reading Techniques

Inspection preparation is crucial for cost-
effective defect detection approaches.

Often: non-systematic approaches (ad hoc)

Reading techniques (RTs) are designed to
support inspectors in defect detection tasks:
– Checklists (CL)
– Perspective Based Reading (PBR)

(e.g. from User-, Designer-, Tester view)
– Usage-Based Reading (UBR)

(e.g. based on use-cases)
– …

Team meetings focus on defect collection /
aggregation (reported by individuals)
e.g. net gain vs. net loss; real vs. nominal
teams.

Planning and
Preparation

Defect detection
(Preparation)

Defect collection
(meeting)

Defect Correction

Follow-Up
Reporting

In
sp

ec
tio

n
Pr

ep
ar

at
io

n
In

sp
ec

tio
n

E
xe

cu
tio

n
Fo

llo
w

-u
p

. Institut für Softwaretechnik und Interaktive Systeme

Selected Reading Techniques (1)

Checklist-Based Reading (CBR)
– Predefined CL-Items, which are applied to the inspection object sequentially
– CLs can spot on different defect types, severity classes, defect locations

(design, code) and must be prepared according to the application domain.
– Typically a checklist consists of a generic part (for general purposes) and a

project specific part, focusing on the individual project requirements.
– CBR is applicable very easy (also by less experienced inspectors), but

defect detection performance depends strongly on inspector capability.

Perspective Based Reading (PBR)
– Defect detection from the view point of different stakeholders: users,

developers, tester.
– Different perspectives enable different types of (additional) defects,

e.g., a user will focus on the functionality and the user interface and
a developer will focus on architecture and software design.

– Domain and method experts are necessary.

. Institut für Softwaretechnik und Interaktive Systeme

Selected Reading Techniques (2)

Usage-Based Reading (UBR)
– Use cases govern inspection process (user focus).
– Application of use cases and scenarios to requirements documents in a

pre-defined order of use cases.
– Prioritization of the use-cases and scenarios by a group of experts; e.g.

domain experts, customers.
– Goal: focus on crucial and most important defects first.

– Typical process of UBR inspection:
(1) Selection of the most important use case,
(2) Check all use case related parts (supported by guidelines)
(3) Record of defects and deviations
(4) Selection of the next use cases (based on the prioritized list).

In empirical studies, UBR inspection has turned out to be the most effective
and efficient way to identify defects early in the domain of administrative
systems.

. Institut für Softwaretechnik und Interaktive Systeme

Costs & Benefits of Inspections

Cost
– Effort of inspectors (person hours);
– Additional effort if team meetings are conducted.
– Inspection must be planned within a project plan in advance.

Benefit
– Early defect detection and correction reduce overall cost and effort.
– Inspection can provide detailed product and project information as input

for resource planning (project and quality management).
– Inspection output (e.g. defect list) is the baseline for product assessment

(e.g., estimation models on remaining defects).
– Increased knowledge on the product for all inspectors.
– Common view of the inspection team on the product.
– Inspection can be used as training for new team members.

. Institut für Softwaretechnik und Interaktive Systeme

Software Testing

Software testing is an analytical quality assurance approach for software
product improvement.
Testing is considered with program execution to find deviations and defects.
In traditional software processes test cases are generated in early cycles of
development (e.g. in the analysis / design phase) and they are executed
during / after software implementation (module, integration, acceptance
tests).
Flexible and agile software processes include test case generation and
execution at the same time (e.g., test driven development).
Testing strategies:

– Private tests: testing by the developer, “testing” his own piece of software.
– Module tests: test for identifying implementation defects (test realization against

the module specification)
– Integration tests: testing the interaction of different modules/components.
– System- and acceptance test: testing the integrated system against customer

requirements (system test performed by the developers, acceptance test usually
performed by the customer).

. Institut für Softwaretechnik und Interaktive Systeme

Test Cases

Tests consist of a set of test cases (test suite).

A test case includes a set of information
– Ongoing number (reference to the test case)
– Test case classification:

normal case: a test case that should not fail
special case: response to special cases, e.g., div / 0
error cases: a test case that should not work and produce helpful
responses.

– Pre-conditions: starting state of the system e.g., DB states
– Input values
– Actions and activities: what happen with the input values, e.g., a

calculation
– Expected output values.
– Result: response on the test case

. Institut für Softwaretechnik und Interaktive Systeme

Some Principles on Testing

Every program contains defects – the goal of testing is to identify them!

The main goal of a tester is to identify defects and to „destroy“ the program
(destructive activity).

No defects found doesn’t mean that a software product doesn’t contain any
defects (think about refining – strengthen – the test cases)

Every identified (and fixed) defect increases the quality of the system (value
of testing).

It is impossible to proof the correctness of a system with functional testing
approaches (formal methodologies would be necessary)!

A developer is responsible for the software product, not the tester!

Defined role distribution within a software project (Tester <> Developer)
– „4-eyes-principles“

Testing is a core activity in software development, not an additional task at
the end of the life-cycle.

Test case / result reporting is necessary to repeat testing phases (regression
testing) after fixing already found defects.

. Institut für Softwaretechnik und Interaktive Systeme

Basic Test Strategies

“Testing is a quality assurance activity in order to find defects”.

Black Box Tests
Based on the specification
document.
Independent on the realization of the
module.
Data-driven (Input/Output).
Requirements coverage.
Equivalence classes of input data.
No defect localization possible.

Input Output

White Box Tests
Based on software code.
Knowledge of internal representation
necessary.
logic-driven tests.
Control-flow coverage.
Equivalence classes of internal
branches and loops.
Enables defect localization.

Input Output

. Institut für Softwaretechnik und Interaktive Systeme

Equivalence Classes

It is impossible to test all possible test cases (very high effort)!
e.g., age: integer all test cases will include age = 1, 2, 3 … 9, 20, 21, …
Thus,
– structure input / output variables in (equivalence) classes,
– and test one representative of each class

Example: customer requirement defines a range of
18 ≤ age ≤ 65 years

three equivalence classes
A1: age < 18 (invalid value)
A2: 18 ≤ Alter ≤ 65 (valid value)
A3: Alter > 65 (invalid value)

three basic test cases:
x ∈ A1, e.g., 10
x ∈ A2, e.g., 35
x ∈ A3, e.g., 70.

. Institut für Softwaretechnik und Interaktive Systeme

Threshold analysis

Extension of equivalence classes for better test case coverage!
Typical defects happens at border values …

Apply threshold values as representatives of a test case class
choose a defined value per „class border“.

Example:
customer requirement defines a range of 18 ≤ age ≤ 65 years:
17 (invalid), 18 (valid), 19 (valid), 65 (valid), 66 (invalid)

valid

a b

. Institut für Softwaretechnik und Interaktive Systeme

Summary

Software defects have a heavy impact on project quality, project duration and
project budget.

Analytical QA approaches must be an integral part of the software development
process.

Reviews and inspection are systematic static analysis technique to verify
quality properties of software. Both approaches are applicable to all types of
software products (e.g., design specification), because they do not require
software code.

Reading techniques (CBR, UBR, PBR) support reviewers and inspectors in
reading software documents.

Software tests are core activities in software engineering, not just add-ons at
the end of the development process.

. .22 Institut für Softwaretechnik und Interaktive Systeme

Referenzen

Biffl, Stefan: „Software Inspection Techniques to support Project and Quality
Management”, Shaker Verlag, 2001, ISBN: 3-8265-8512-7
Boehm B.: Software Risk Management: Principles and Practices, IEEE
Software 8(1), pp32-41, 1991.
Dustin E., Rashka J., Paul J.: "Automated Software Testing", Addison-Wesley,
1999, ISBN 0-201-43287-0

Kappel G.: On Models and Ontologies – or what you always wanted to know
about Model-Driven Engineering, Keynote SEE Conference, Munich, 2007.
Kaner C., Falk J., Nguyen H-Q: “Testing Computer Software", Wiley, 1999,
ISBN 0-471-35846-0

Laitenberger, Oliver: "Cost-Effective Detection of Software Defects Through
Perspective-based Inspections"; PhD Theses in Experimental Software
Engineering Vol. 1, 2000
Software Engineering – Best practices:
http://best-practice-software-engineering.blogspot.com/

Sommerville, Ian: „Software Engineering“, 8th Edition, Addison Wesley, 2007.

. Institut für Softwaretechnik und Interaktive Systeme

Thank you for your attention

Contact:
Dipl.-Ing. Dietmar Winkler

Vienna University of Technology
Institute of Software Technology and Interactive Systems

Favoritenstr. 9-11/188, A-1040 Vienna, Austria

dietmar.winkler@qse.ifs.tuwien.ac.at
http://qse.ifs.tuwien.ac.at

. Institut für Softwaretechnik und Interaktive Systeme

This research work has been supported by a Marie Curie Transfer of Knowledge
Fellowship of the European Community's 6th Framework Programme under the

contract MTKD-CT-2005-029755: CzechVMXT.

