
. Institut für Softwaretechnik und Interaktive Systeme

Agile Software Engineering Practice to
Improve Project Success

Dietmar Winkler

Vienna University of Technology
Institute of Software Technology and Interactive Systems

dietmar.winkler@qse.ifs.tuwien.ac.at
http://qse.ifs.tuwien.ac.at

. Institut für Softwaretechnik und Interaktive Systeme

Motivation

The construction of high-quality software products requires (a) professional
approaches (software processes), an appropriate set of methods, and well-
trained engineers.
Rapid and late changing requirements are success-critical challenges in
common industrial projects because they have a strong impact on product
quality, design, and project schedule.

Question
How can we address unclear, rapid and late changing requirements in
(industry) software projects?

Topics
Structured Software Engineering Processes (e.g., V-Modell XT).
Agile Software Development Processes (e.g, SCRUM).
Software Development Practices (MDD / TDD / Pair Programming)

2

. Institut für Softwaretechnik und Interaktive Systeme

Why Requirements are Important …

Requirements represent the needs of the customer (what does he need?) from
user/customer point of view.
Requirements contribute to the solution of a real-world-problem.
[SWEBOK, 2004]

A requirement is an expression of desired behavior from user perspective.

Requirements management is the science and art of gathering and managing
user, business, technical, and functional requirements within a product
development project.

Requirements management deals with a set of requirements to handle
complex systems.

Note: Requirements must be auditable and testable!

The hardest single part of building a system is
deciding what do build. (B.W. Boehm, 1997)

. Institut für Softwaretechnik und Interaktive Systeme

Impact of Requirements

Reasons for project interruption - survey including 365 industrial
responses (8.380 applications) [Chaos Report, 1994]:
1. Incomplete requirements (13.1%)
2. Lack of User Involvement (12.4%)
…
6. Changing Requirements and Specifications (8.7%)
…

Selection of “Top-Ten” risk items for project failure [Boehm, 1991]
…
3) Developing wrong software functions.
4) Developing the wrong user interfaces.
5) Gold plating.
6) Continuing stream of requirement changes.
…

Software Processes help to address requirements elicitation.

. Institut für Softwaretechnik und Interaktive Systeme

Software Life-Cycle

The Software Life Cycle is a general purpose process including all process
steps from the first idea to the retirement of a software product.
A Software Process is a subset of the life cycle approach and defines the
sequence of steps within the project course.
Support of Software / Systems Development.
Provide consistent guidelines, method and tool support, embedded within the
process.

In common industrial practice, several different software processes emerged:
Focus on specific application
domains and project types.
Limited to specific types of
products and their attributes.
Need for selection criteria
for software processes.

. Institut für Softwaretechnik und Interaktive Systeme

Structured Software Engineering
Processes Example: V-Modell (XT)

operation /
maintenance

system
specification

system
design

module
specification

tested
modules

tested
design/system

installed
systemuser view

archetectural view

implementing view

acceptance test

integration test

module test

idea / studyPro:
Specification vs. Realization and
Testing.
Focus on deliverables (products)
Different levels of abstraction
(user, architects, programmers).
Defect detection and prevention
in early stages of development.

Con:
Clear definition of system requirements necessary.
Well-known application domain required.
Focus on documentation (Documentation overhead).
Critical on defects in early stages of software development.

Application:
Large projects with clear defined goals and requirements.

. Institut für Softwaretechnik und Interaktive Systeme

Incremental Software Development

analysis design Implementation /
integration Product delivery

Build 1

analysis design Implementation /
integration Product delivery

Build 2

analysis design Implementation /
integration Product delivery

Build 3

analysis design Implementation /
integration Product delivery

Build n

analysis team design team implementation team
Note:

. Institut für Softwaretechnik und Interaktive Systeme

Incremental Software Development

Stepwise product development (several releases, builds)
Continuous integration phases
Small steps of development (planning of software increments)
Planning of iterations including milestone definition after each development
cycle.

PRO
Unclear requirements.
long development duration.
Quick delivery of (parts) of the system
to customers.

CON
Problems, if releases will not fit
together.

Application
Large and complex software systems.
Project with long development duration

. Institut für Softwaretechnik und Interaktive Systeme

Some Questions …

Structured and systematic software processes define the sequence of
steps within a project course.

Is it always possible / reasonable to follow a strict process?
Does a structured process address rapid/late changing requirements?

Structured processes (e.g., the V-Model 97) require comprehensive
documentation.

Is a comprehensive documentation necessary all the time?

Structured processes allow a detailed project plan because of the pre-
defined steps over the whole project.

What happens, if modified/additional requirements occur in later stages
of development?

Typically software projects are based on contracts (based on a detailed
specification).

. Institut für Softwaretechnik und Interaktive Systeme

Agile SE Approaches1

4 Key Value Aspects of Agile Software Development
– Individuals and interaction over processes and tools
– Working software over comprehensive documentation.
– Customer Collaboration over contract negotiation
– Responding to change over following a plan.

Key Principles (Selection):
– Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.
– Welcome changing requirements, even late in the development.
– Deliver working software frequently.
– Collaboration of business people and developers.
– Simplicity of the solution.
– The best architectures, requirements, and designs emerge from self-

organizing teams.
– etc.

1 http://www.agilemanifesto.org/

. Institut für Softwaretechnik und Interaktive Systeme

SCRUM

Agile Software Process from Project Management (PM) view.
SCRUM is not an acronym; it is based on the scrum formation in Rugby
sports.

Characteristics:
– One team builds one unit.
– Clear distribution of work.
– Clear priorities of project deliverables (backlog items).
– One common goal (= delivery of the product)
– A “Sprint” is a central element.
– Temporal structure = daily Scrum Meeting + Review + Retrospective.

Basic Roles:
– Product Owner
– (Self-organizing) Team
– Scrum Master

. Institut für Softwaretechnik und Interaktive Systeme

SCRUM Phases

PRE-GAME SPRINT POST-GAME

. Institut für Softwaretechnik und Interaktive Systeme

SCRUM Sprints

Scrum represents a set of
procedures, roles and
methods for project
management.

Agile software development

Self-organizing teams.

. Institut für Softwaretechnik und Interaktive Systeme

SCRUM – Definition of terms

Backlog: All work to be performed in the near future, both well defined and
requiring further definition.

Sprint: A period of 30 days or less where a set of work will be performed to
create a deliverable.

Sprint Backlog: A set of defined work packages for a sprint duration of
about 1 month (incremental deliverables). No or only a few changes are
possible.

Scrum: A daily meeting for progress discussion to clarify questions and to
remove obscurities.

Scrum Meeting rules: Protocol for effective Scrum daily meetings.

Scrum Team: The cross-functional team working on the sprint's backlog.

Burndown Chart: Graph that represents the project progress.

. Institut für Softwaretechnik und Interaktive Systeme

Agile Practices

Software processes require suitable methods to support engineers in
constructing high-quality software products,
e.g.,

Model-Driven Development.

Test-Driven Development.

Pair Programming.

. Institut für Softwaretechnik und Interaktive Systeme

Model-Driven Development

Software Engineering requires die construction of consistent views on the
system.

Models support to keep an overview on the system and its components.
– Basis for effective and efficient team work.
– Common notation (language) and consistent meaning

(different stakeholders / domains typically use their own „language“)
– Basis for automation (e.g., automated code generation, test case

generation, testing, etc.)

Examples (based on the UML 2 1 diagram family):
– 6 Structural diagrams: e.g., component, package, and class diagrams
– 3 Behavioral diagrams, e.g., activity diagrams, state charts, use cases.
– 4 Interaction diagrams, e.g., sequence and timing diagrams.

UML = Unified Modelling Language

. Institut für Softwaretechnik und Interaktive Systeme

UML 2 - Examples

Requirements & Use Case
Description

Customer
Need

Implementation
Perspective

Data model

Process PerspectiveDeployment
Perspective

Use Case Perspective

Logical
Perspective

> Notation for Modeling a System
> describes statical and dynamical aspects
> Note: Perspective selection depends on the type of the system

. Institut für Softwaretechnik und Interaktive Systeme

Model Driven Development

Description of real-world problems in a common
language (e.g., UML notation).
Basis for communication between consumers
and developers.

Translation
– From models to artifacts (e.g., code)
– From models to other models
– Etc.

Basis for automation (e.g., deriving software code
and test cases based on models)

. Institut für Softwaretechnik und Interaktive Systeme

Test-Driven Development (TDD)

Goal: Every feature in an application that gets implemented has to be testable.
Testing either automatically using unit tests, automated UI tests, etc. or
manually executed by following a predefined test plan.
Test comes before or parallel to the implementation.
Traditional Testing Approaches based on test strategies and plans:

Shorter Cycles are quite better.

. Institut für Softwaretechnik und Interaktive Systeme

Test-Driven Development (TDD) (2)

Schatten A.: Automated Quality Assurance & Architectural Aspects; QA Course 2007, TUW

. Institut für Softwaretechnik und Interaktive Systeme

Test-Driven Development (TDD)

Unit Tests: construction of executable test cases.
Derive assertions for test case execution (expected results)
– Normal case: should be handled without problems.
– „correct defect“: should be handled by the system (predictable

exception handling)

Basic TDD „Process“:
Identify the component / class
Write Test cases (e.g., JUnit)
– Execute Test cases Test cases should fail

Implement the component/class
– Execute Test cases Test cases should be successful.

Cleanup code

. Institut für Softwaretechnik und Interaktive Systeme

Pair Programming

Pair Programming (PP) is a common practice in
the area of agile software engineering.
PP focuses on the construction of software code.
PP involves two engineers (“Power of Two Brains”).

Typical Roles and tasks
Driver:
– responsible for code implementation.

Observer:
– supports the driver by observing his activities.
– keeper of the focus and the pace of the current tasks.
– performs implicit quality assurance activities (e.g., continuous reviews)

The role assignment (driver and observer) should change frequently.

. Institut für Softwaretechnik und Interaktive Systeme

Pair Programming Pros & Cons

Reported benefits of PP vs. Solo Programming
More disciplined (2 persons involved)
Improved software code and higher code quality (implicit quality assurance)
Improved productivity (change of roles)
Collective code ownership (2 persons involved)
Mentoring & learning (e.g., senior/junior as “pair”), …

But …
Additional effort (2 persons involved)
Possible authority problems.
Team building might be difficult
Copyright issues
What are the deliverables of the observer? …

Nevertheless, PP is a promising approach for the delivery of high-quality
software products (e.g., reported from industry and academic studies)

. Institut für Softwaretechnik und Interaktive Systeme

Next Steps in Pair Programming1?

“Pair X”: Enhancing Pair Programming.
Application of “Pairs” to other software engineering activities,
e.g., Pair Requirements Analysis, Pair Design, Pair Testing …
– Will the involvement of two persons increase productivity and quality in

these areas?
– Are pair activities facilitators for learning, training and mentoring of juniors?
– Empirical studies will provide answers to this question.

IPP: Integrated Pair Programming
Extending Pair Programming with systematic Quality Assurance to enable
repeatable, traceable and auditable software products required by several
application domains e.g., security and safety-critical systems.
– Currently, the deliverables of the observer are unclear.
– Systematic QA (e.g., inspection) enable traceable, repeatable, and

auditable software products.
– The integration of constructive and analyitical method might bring up

benefits of different disciplines.

1Ongoing / planned projects at TUW.

. Institut für Softwaretechnik und Interaktive Systeme

Summary

Software Processes:
Requirements are success-critical in software engineering projects.
Structured software processes typically require stable requirements because of
a sequential order of process steps with limitations of process backtracking.
Agile approaches focus on a tight customer involvement, small iterations and
support frequent changing requirements.

Agile Practices:
Models present real-world scenarios, support communication between
consumers and developers (common language), and are the basis for
automation (e.g., automated code generation based on models).
Test-Driven Development (TDD) focuses on the generation of test cases before
or (at least) in parallel to the development of software code.
Pair Programming is a team activity - involving two persons - to increase
productivity and software quality and supports learning.

The application of agile software development processes and practices
promises to support the construction of high-quality software products with
respect to frequent changing requirements.

. Institut für Softwaretechnik und Interaktive Systeme

References

Books & Papers:
Boehm B.: Software Risk Management: Principles and Practices, IEEE Software
8(1), pp32-41, 1991.
Kappel G.: On Models and Ontologies – or what you always wanted to know
about Model-Driven Engineering, Keynote SEE Conference, Munich, 2007.
Sommerville I: Software Engineering, 7th edition, 2007.
Williams L, Kessler R, “All I really need to know about pair programming I
learned in Kindergarten”, in Communication of the ACM 43(5), 2000.

Web References:

Schwaber Ken: SCRUM Development Process, 1995
http://www.controlchaos.com/old-site/scrumwp.htm
Software Engineering Body of Knowledge, http://www.swebok.org, 2004.
Software Engineering – Best practices:
http://best-practice-software-engineering.blogspot.com/

V-Modell XT; http://www.v-modell-xt.de.

. Institut für Softwaretechnik und Interaktive Systeme

Thank you for your attention

Contact:
Dipl.-Ing. Dietmar Winkler

Vienna University of Technology
Institute of Software Technology and Interactive Systems

Favoritenstr. 9-11/188, A-1040 Vienna, Austria

dietmar.winkler@qse.ifs.tuwien.ac.at
http://qse.ifs.tuwien.ac.at

. Institut für Softwaretechnik und Interaktive Systeme

This research work has been supported by a Marie Curie Transfer of Knowledge
Fellowship of the European Community's 6th Framework Programme under the

contract MTKD-CT-2005-029755: CzechVMXT.

