
An Empirical Study on Design Quality Improvement from
Best-Practice Inspection and Pair Programming

Dietmar Winkler, Stefan Biffl
Vienna University of Technology,

Institute of Software Technology and Interactive Systems

dietmar.winkler@qse.ifs.tuwien.ac.at
http://qse.ifs.tuwien.ac.at

Vienna University of Technology
Institute of Software Technology and Interactive Systems

2

Motivation

In general, early detection and removal of defects, e.g., in the design phase, helps
increase software quality and decrease rework effort and cost.
Specifically, the design phase offers leverage to improve software quality, when the
requirements “meet” the opportunities and constraints of engineering solutions.

Analytical Quality Assurance typically uses reviews and inspections for systematic
V&V in early software development phases.
Pair Programming is a constructive approach including implicit quality assurance.

RQ:
How effective can inspectors be at detecting defect compared to programmers who find
defects as by product of their construction activities?
How to add benefits of inspection to pair programming?
Evaluation of this new integrated pair programming approach in an empirical study.

Initial study to find out whether the new approach is worthwhile investigating.

Vienna University of Technology
Institute of Software Technology and Interactive Systems

3

Analytical vs. Constructive Quality Assurance

Software Inspection

Analytical Best-Practice Approach.
Early in the Software Life-Cycle.
Systematic quality assurance activity.
Additional Effort for Defect Detection.

Pair Programming

Constructive Approach
Including implicit quality assurance activities.
Design – Implementation – Testing.
Defect detection as by-product of code
construction.

System and
Software Design

Best-Practice
Software Inspection

Pair Programming

Defect
Detection

Design Verification

Implementation & Module Test

Design Validation

Operation and
Maintenance

Requirements
Definition

Integration &
Systems Test

Vienna University of Technology
Institute of Software Technology and Interactive Systems

4

Best Practice Inspection

Software Inspection …
is a static analysis technique to verify quality properties of software.
does not require executable code (applicable to design documents).
focuses on defect types and location in the inspected object.
Guidance of inspectors with reading techniques and guidelines.

“Best-practice” approach: Usage-Based Reading (UBR)
Well-investigated established approach.
Goal: focus on most important defects first (classes “crucial” and “important”).
User focus: use cases lead the inspection process.

Application of use cases and scenarios from requirements documents
in a pre-defined order (prioritized by a group of experts) to design document.
Active guidance through guidelines and prioritized use-cases.

Vienna University of Technology
Institute of Software Technology and Interactive Systems

5

Pair Programming with Inspection

Pair Programming
PP involves 2 persons (driver/observer),

Driver: implementation role.
Observer: supporting role.
Roles may change frequently.

sharing a common development
environment (screen, keyboard, mouse).

Integrated PP approach:
More systematic defect detection approach.
Active support with reading techniques and guidelines.
Focus on most important use cases (prioritization).

Comparison of best-practice inspection and the new integrated PP approach according
to defect detection capability in an empirical study.

D
ev

el
op

m
en

t
P

ac
ka

ge

Integrated Pair Programming Approach

Vienna University of Technology
Institute of Software Technology and Interactive Systems

6

Research Questions

General idea: Integrating inspection in PP leads to more structured defect detection
approaches, improves overall defect detection capability, and software product quality.

1. Hypotheses for natural work units (individual inspectors vs. pairs)

H1.1: Effectiveness (PP) > Effectiveness (UBR): source code documents

H1.2: Effectiveness (PP) < Effectiveness (UBR): natural-language text documents.

Note: higher overall effort applying PP, because of different “team size” (2 persons)
and focus on code construction (defect detection as a by-product).

2. Similar hypothesis for “minimal teams” (2-person inspection teams vs. pairs).

3. Performance of nominal teams:
Do mixed teams perform better than “best-practice” teams?

Vienna University of Technology
Institute of Software Technology and Interactive Systems

7

System Overview:

Software Artifacts

Textual requirements: 8 pages, 2 component diagrams.

Design document: 8 pages, 2 component diagrams and 2 UML charts.

Use case document: 24 use cases and 23 sequence diagrams.

Source Code: some 1,400 LoC, 9-page description.

Guidelines and Questionnaires.

System Overview: Taxi Management System

Vienna University of Technology
Institute of Software Technology and Interactive Systems

8

Empirical Evaluation: A Controlled Experiment

An experiment to investigate defect detection capability of best-practice inspection and an
integrated pair programming approach.

Three experiment phases processed:
(a) training & preparation, (b) individual inspection, and (c) data submission.

60 Reference Defects
(29 crucial, 24 major, 7 minor) seeded in the design specification and source code.

41 Subjects (experiment participants):
graduate students in a class on quality assurance and software engineering
(15 UBR, 26 pair programmers, i.e., 13 pairs).

Effort for Inspection / Pair Programming
Inspection effort includes preparation time (derivation of requirements and system functions, etc.)
and individual inspection duration; overall effort: about 4-5 ph (person hours).

Pair Programmer effort includes the additional task of code construction;
overall effort: about 17ph.

Vienna University of Technology
Institute of Software Technology and Interactive Systems

9

Results: Effectiveness of Working Units

Effectiveness is the number of defects found
defects in relation to the number of seeded
defects.

Focus on important defects (risk A+B)
and document location (design document,
source code).

Effectiveness (PP) > Effectiveness (UBR)
for all defect severity classes and document
locations.

Significant differences for
Source Code and
Design Document & Source Code.

No significant differences for
Design Document.

The integrated PP approach outperforms
inspection according to source code defects.
Smaller differences for design documents
but still advantages for PP.

1513 1513N =

Technique Applied

UBR-IndividualPP-Pair

E
ffe

ct
iv

en
es

s,
 C

la
ss

 A
+B

 [%
]

100

80

60

40

20

0

Location

 Design Document

 Source Code

Vienna University of Technology
Institute of Software Technology and Interactive Systems

10

Results: Effectiveness of “Minimal Teams”

Comparability in team size minimal teams.
Pair: 2 persons (original work unit).
UBR-MT: nominal 2-person team of
individual inspectors (randomly assigned).

Focus on important defects (risk A+B)
and document location (design document,
design source code).

Significant differences for
Source Code.

No significant differences for
Design Document and
Design Document & Source Code.

Technique Applied (Minimal Teams)

UBR-MTPP-Pair

E
ffe

ct
iv

en
es

s,
 C

la
ss

 A
+B

 [%
]

100

80

60

40

20

0

Location

Design Document

Source Code

PP outperforms effectiveness acc. to source
code defects.
Advantages for UBR-MT according to design
document defects.

Vienna University of Technology
Institute of Software Technology and Interactive Systems

11

Results: Team Composition (1 of 2)

Inspection and Pair Programming focuses on different defect types and defect locations.
Thus, we expect an improved performance of mixed teams due to synergy effects.

A “nominal team” is a collaboration of two or more members without interaction.
Team building: continuous increase of effectiveness for up to 4 team members.

Increasing effectiveness for design documents
(smaller gain including additional pairs).
Increasing effectiveness for source code including
additional pairs and an almost constant value on
inspector integration up to 4 team members.
PRRR: decreasing effectiveness acc. to source
code defects.

60,0%

65,0%

70,0%

75,0%

80,0%

85,0%

90,0%

PR PP PRR PPR PRRR

Team Composition

Ef
fe

ct
iv

en
es

s,
 C

la
ss

 A
+B

 [%
]

all matched, design Risk AB, design
all matched, source Risk AB, source

Note:
P … 1 Pair (=2 persons)
R ... 1 individual Inspector (UBR)

Vienna University of Technology
Institute of Software Technology and Interactive Systems

12

Summary & Further Work

Summary

The integration of analytical quality assurance activities (software inspection) improves defect
detection in specific document locations.

Effectiveness of natural work units: Significant differences for source code defects and all
document locations. No significant differences for design document.

Effectiveness of “minimal teams”: Improved effectiveness for design defects (but no significant
differences) for UBR. Significant differences for PP and source code defects.

Team Composition (Nominal teams): a mixed team of UBR and PP participants achieves higher
effectiveness according to the individual focus of the technique. Best results for:

PPR (team size: 5) for all documents types and for source code documents.
PRRR (team size: 5) for design documents.

Further work
Replication to achieve higher external validity and to verify the results.
Investigation of quality issues of modified/constructed pair programming source code.
Investigation of the impact of inspector capability on inspection performance.

