

### Investigating the Impact of Active Guidance on Design Inspection

Dietmar Winkler, Stefan Biffl, Bettina Thurnher

Vienna University of Technology, Institute of Software Technology and Interactive Systems

> Dietmar.Winkler@qse.ifs.tuwien.ac.at http://qse.ifs.tuwien.ac.at

## **Software Inspection for Design Documents**

#### Software Inspection ...

- Is a static analysis technique to verify quality properties of software.
- Supports structured quality improvement.
- Enables defect detection in early stages of software development.
- Does not require executable code (applicable to design documents).
- Inspection procedure follow three steps:
  - 1. Defect detection (individual activity, with reading technique support)
  - 2. Defect collection (team activity to identify false positives)
  - 3. Defect repair
- Reading techniques support inspectors in their defect detection process (e.g., checklists / usage-based reading technique).

## **Inspection and Reading Techniques**





- Inspection preparation is crucial for costeffective defect detection approaches.
- Often: non-systematic approaches (ad hoc)
- Reading techniques (RTs) are designed to support inspectors in defect detection tasks:
  - General checklists (CBR-gc) [No guidance]
  - Tailored Checklists (CBR-tc) [Active guid.]
  - Usage-based reading (UBR) [Active guid.]
- Research question: Does active guidance in a RT improve of defect detection performance?

Vienna University of Technology Institute of Software Technology and Interactive Systems

### **Passive vs. Active Guidance**

Reading is a key activity to detect defects.

#### Passive Reading Techniques

- Inspectors follow a sequence of individual steps (e.g. a given checklist)
- and let the inspector figure out how to proceed best.

#### Active Reading Techniques

- Provide details on the inspections process (how to perform an inspection).
- Includes a separation of perception (*what to inspect*), e.g. focus on different defect severity classes, defect types, etc.
- Provide guidance through the most important parts of the document.
- Support inspectors in their defect detection process.





#### Generic checklists (CBR-gc):

- Generic checklists offer only little guidance for inspectors.
- Predefined set of questions according to defect type, severity classes and location.
- General purpose approach, independent of the application domain.
- Application of checklist questions to requirements documents sequentially.
- Strongly dependent on inspector capability and domain knowledge.

#### Tailored checklists (CBR-tc):

- Provides a process for inspection proceeding:
- Analysis of requirements and system functions first.
- Individual tailoring of requirements according to their subjective importance; active participation of inspectors is an important aspect of the inspection process.
- Active guidance through domain specific guidelines for requirements prioritization.

### **Usage-Based Reading Technique**

#### **Usage-Based Reading (UBR):**

- Use cases govern inspection process (user focus).
- Application of use cases and scenarios to requirements documents in a pre-defined order of use cases (prioritized by a group of experts).
- Goal: focus on crucial and most important defects first.
- Active guidance through guidelines and prioritized use-cases.



### **Dependent Variables and Hypothesis**

- Inspection effort includes individual preparation time (tailoring of checklist items) and
- inspection duration (we did not consider inspection pre-work, e.g. use case prioritization and checklist generation).
- Effectiveness is the number of defects according to defect severity classes in relation to the overall number of seeded defects of the individual defect severity class.
- Efficiency is the number of defects found per time interval (e.g., defects found per hour)
- Hypotheses:

- Active Guidance will improve effectiveness and efficiency.
- Effectiveness (UBR) > Effectiveness (CBR-tc) > Effectiveness (CBR-gc)
- Efficiency (UBR) > Efficiency (CBR-tc) > Efficiency (CBR-gc)

### **Experiment Description: Taxi Management System**



- A replicated and extended experiment (Thelin et al, 2003 and 2004) to investigate active guidance on reading technique application.
- Three experiment phases processed: (a) training & preparation,
  (b) individual inspection, and (c) data submission.
- Software Artifacts:
  - Textual requirements document describing a taxi management system containing 9 pages, 2500 words and 2 sequence charts.
  - Use case document contains 24 use cases in task notation.
  - Guidelines for CBR-gc/tc and UBR reading technique approaches and questionnaire.
- Subjects (experiment participants):
  - 127 software engineering students (24 CBR-gc, 48 CBR-tc, 55 UBR).
  - CBR-gc used as control group.
- 39 Reference Defects (13 crucial, 15 major, 11 minor defects) seeded in the design specifiation

# **Results: Inspection Effort**



- Inspection Effort includes individual preparation time (derivation of requirements and system functions) and individual inspection duration.
- All three RTs have on average similar total effort.
- Longer preparation time and shorter inspection time for tailored checklists (CBR-tc.)
- CBR-gc and UBR show similar distribution on preparation and inspection duration.

|         |             | CBR-gc | CBR-tc | UBR   |
|---------|-------------|--------|--------|-------|
| Mean    | Preparation | 43.3   | 46.0   | 42.8  |
|         | Inspection  | 120.3  | 110.0  | 117.7 |
|         | Total       | 163.5  | 155.9  | 160.6 |
| Std.Dev | Preparation | 15.7   | 19.0   | 22.5  |
|         | Inspection  | 27.9   | 30.8   | 28.1  |
|         | Total       | 25.1   | 34.6   | 29.5  |

#### Vienna University of Technology Institute of Software Technology and Interactive Systems

# **Results: Effectiveness**

- Effectiveness is the number of defects found defects in relation to the number of seeded defects at a defect severity class.
- Focus on crucial defects (class A), important (class A+B) and all defects.
- Effectiveness (UBR) > Effe (CBR-tc) > Effe (CBR-gc) for all defect severity classes.
- The performance advantage of UBR is greatest for important (class A+B) defects.

80 60 40 effectiveness [%] 20 class A class A+B all defects 24 N = 24 24 55 48 55 55 CBR - ac CBR - tc UBR reading technique

Significant differences at all RTs and defect severity classes.





#### Vienna University of Technology Institute of Software Technology and Interactive Systems

### 11

### **Results: Efficiency**

- Efficiency combines the measures of effort and effectiveness and is measured as the defect detection rate per hour.
- Efficiency (UBR) > Effi (CBR-tc) > Effi (CBR-gc).
- Significant differences concerning CBRgc/UBR according to crucial (class A) and important (class A+B) defects.
- Significant differences concerning CBRgc/CBR-tc according to crucial (class A) defects.





# **Summary & Further Work**



#### Summary

- Active guidance support inspection proceeding (UBR and CBR-tc).
- UBR expert know-how has significant effects on defect detection rates.
- Both RTs with active guidance perform significantly better than CBR-gc.
- Effort: Similar overall amount of inspection duration, but higher preparation and a lower inspection time of CBR-tc.
- Effectiveness: Highest effectiveness of UBR and lowest effectiveness of CBR-gc because of pre-defined priorities of use cases. CBR-tc is somewhat between them.
- Efficiency: Highest efficiency of UBR reading technique approaches (expert rating of use cases).

#### Further work

Investigation of the impact of inspector capability on inspection performance.