

Scientific Work - Kick off Big Data in Systems& Software Engineering Stefan Biffl, Dietmar Winkler, Kristof Meixner

- Dietmar Winkler & Kristof Meixner
 - $\circ~$ Corresponding co-supervisors for Seminar Scientific Work
 - ∘ E-Mail
 - dietmar.winkler@tuwien.ac.at
 - kristof.meixner@tuwien.ac.at
- Attendants
 - Who is present?
 - Who filled out the questionnaire?

Figure 1: Big Data Topics, By Camelia.boban, CC BY-SA 3.0

- Big Data allows *extraction* and *systematic analysis* of complex datasets
 - · Data Analytics derivation of novel facts or events
 - Decision Making selection support for plans or solutions
 - Relationship Learning recognition of relations from hidden characteristics
- Recently growing interest in Big Data research

🔛 Big Data in Systems & Software Engineering

- Goal of the study
 - $\circ~$ Identifying novel approaches of Big Data in SSE
 - $\circ~$ Identifying evidence for benefits of Big Data in SSE
 - Identifying issues that require Big Data in SSE
- Study methodology
 - Adapted Systematic Literature Study
 - · Contributions will flow into a common seminar work
- Skills that you learn
 - Knowledge about Big Data Technologies
 - How to conduct an Adapted Systematic Literature Study

🔛 SLR Approach

- Define Review Protocol
 - $\circ~$ Define search strategy, selection criteria and data extraction
- Assess Review Protocol
 - Researchers check feasibility
- Keyword selection
 - Each students reads the basic papers
 - Students in pairs define keywords

🔛 Step 2 – Study Planning

- Identify Research
 - Each student searches the Scopus data catalog
 - Collect papers based on title, abstract and keywords
- Select Research
 - Papers are checked for relevance
 - Papers are cross-checked by other students
- Data Extraction
 - Each students get the data collection sheets
 - Each students gets three (3) papers
 - $\circ~$ Student reads the paper and collects the data

Step 3 – Write Report

- Write Report
 - Write up findings from data sheets
 - definitions, methods, models, examples
 - Needs interpretation of the data
- Present Work
 - Lessons learned in seminar
 - Aspects of Big Data

- 29.10. (10-11h [A,D], 11-12h [B,C]) Read basic literature & define keywords
- 13.11. Identify research
- End Nov./Begin Dec. Select papers
- 11.12. Extract data
- 22.01. Write report

• Groups

- Exchange contact info
 - Define corresponding member
 - Define a group speaker

Until Wed, 29.10.19

- Read basic literature (individual)
 - Big Data
 - Madhavji et al., Big Picture of Big Data Software Engineering: With Example Research Challenges. (BIGDSE'15)
 - Michael and Miller, Big Data: New Opportunities and New Challenges [Guest editors' introduction] (Computer'13)
 - Casado and Younas, *Emerging trends and technologies in big data processing*. (Concurrency Computat.: Pract. Exper.'15)
 - Systematic Literature Review
 - Kitchenham et al., Systematic literature reviews in software engineering – A systematic literature review. (IST'09)

TU Next Steps – cont'd

Until Wed, 29.10.19

- Define keywords/search string (pairwise)
 - Define keywords
 - Define search string

Stefan Biffl, Dietmar Winkler, Kristof Meixner Security and Quality Improvement in the Production System Lifecycle (CDL SQI)

Technische Universität Wien Favoritenstraße 9–11, 1040 Wien stefan.biffl@tuwien.ac.at