
Semi-Automated Test Case  
Generation for Legacy Code 

 

 

              

 

 

Contact: 

Prof. Dr. Stefan Biffl 
TU Wien 

stefan.biffl@tuwien.ac.at 
qse.ifs.tuwien.ac.at 

Johannes Bergsmann 
Software Quality Lab GmbH 

johannes.bergsmann@software-quality-lab.com 
www. software-quality-lab.com 

 (Legacy)
Code

Code 
Structure

Test Cases

analyse Intermediate 
Model

derive

generate

Test coverage

Extended 
Test Cases

extendapply(Legacy)
Code

Test coverageru
n 

ex
ist

in
g 

te
st

 c
as

es

Test Expert

 

The generic approach enables a semi- 
automated generation of test code 
based on existing legacy code. Results of 
a source code analysis step include the 
derivation of an abstract intermediate 
model as foundation for generating test 
cases based on equivalence classes and 
for automated test execution.  
 

Goal 
Legacy systems and recently developed 
source code often include software code 
without related software tests. However, 
completing tests afterwards often re-
quires a high effort. The generic ap-
proach for semi-automated test case 
generation supports engineers and de-
velopers to provide missing test cases ef-
ficient and in a systematic way. These 
(generated) test cases can also be used in 
migration projects to evaluate the prod-
uct quality of migrated products effective 
and efficient. A language independent 
code model, i.e., an abstract syntax mod-
el, supports different programming lan-
guages. 
 

Implementation 
Software Quality Lab GmbH and TU Wien 
developed a prototype for semi-
automated test case generation. Based 
on a simple example, existing software 
code can be analyzed and an abstract 
syntax tree can be derived. An 
equivalence class editor uses the abstract 
syntax tree to generate test cases, to be 
executed automatically. Fig. 1 illustrates 
the basic process of the approach. 
 

(Legacy)
Code

Code 
Structure

Test Cases

analyse Intermediate 
Model

derive

generate

Test coverage

Extended 
Test Cases

extendapply(Legacy)
Code

Test coverageru
n 

ex
ist

in
g 

te
st

 c
as

es

Test Expert  
Fig. 1: Basic Process Approach. 

 

Use Case 
The developed research prototype focus-
es on a test automation process (see Fig. 
2) including six main process steps: 
1. Parse Code: Analysis of source code, e.g., 

in C, and generation of an abstract syntax 
tree.  

2. Code Classification: Different code 
complexity levels (e.g., simple conditions, 
loops, dependencies, or global variables) 
require different approaches for 
automation (currently out of scope of the 
prototype).  

3. Test Approach: In context of test 
approach, the prototype focuses on 
equivalence classes with tool support.  

4. Test Case Generation focuses on (a) the 
generation of Test-Studs and (b) the 
generation of test code. 

5. Derive Test Code: In context of the 
prototype use case, test code will be 
generated automatically and can be 
complemented manually (if needed). 

6. Run & Analyze Test Code: The prototype 
focuses on using test cases executable in 
the Eclipse development environment. 

 
 

The generic approach enables two im-
portant application scenarios (S): 
• S1: Generation and development of 

missing tests and, therefore, increase 
test coverage of legacy code. 

• S2: Support of migration projects 
due to reuse of test cases and the 
abstract syntax tree of the code.  

Technical Specification 
• Process for a semi-automated deri-

vation of test cases based on code 
analysis.  

• Consideration of Software Engineer-
ing Best-Practices. 

• Flexibility and extensibility based on 
modular and component-oriented 
architecture.  

• Integrated tool chain based on real-
world customer use cases. 

Key Characteristics 
• Support of different test strategies 

and approaches.  
• Improved test cases based on semi-

automated generation of test cases 
complemented with manual test 
cases to identify also error defects. 

• Support of different Unit-Test-
Frameworks that could be integrated 
in the process. 

 

Your Benefits 
 Support to systematically  

construct of currently missing 
Software Tests. 

 Quality assurance support in 
migration projects based on 
reusable test cases. 

 Application of Best-Practices. 
 Language independent model-

ing of software code (abstract 
syntax tree) 

 
Fig. 2: Process for a semi-automated Generation of Test Cases. 


