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Abstract. With the growing industrial adoption of semantic web technology, the 

underlying middleware systems are faced with increasing demands on dynamism 

and efficiency. An approach that has recently gained popularity in this field are 

semantic publish/subscribe mechanisms. With these mechanisms, clients can 

observe the knowledge currently represented in a semantic repository and they can 

react to changes of this knowledge. Since the currently available implementations of 

semantic publish/subscribe systems differ essentially with respect to performance 

and functional scope, it is particularly important to thoroughly evaluate which 

system best meets an application’s requirements. However, just this evaluation often 

turns out to be difficult as common evaluation frameworks and methods have not 

yet been established for this kind of systems. In this paper, we take a first step 

towards such an evaluation framework by defining two performance metrics and 

implementing a benchmark framework for measuring these metrics. For illustrating 

its application, the paper further describes the use of the framework in the SENS 

project, where it was employed (i) to find performance bottlenecks of a lightweight 

semantic publish/subscribe framework, (ii) to identify potential optimization 

approaches, and (iii) to quantify the improvements achieved with the developed 

optimization mechanisms.  

1 Introduction 

The adoption of semantic web concepts in a wide range of application areas has led to 

increased requirements on the underlying technologies. Semantic repositories are not 

only used for one-time loading and reasoning about a knowledge base but rather for the 

management of highly dynamic knowledge bases. For reacting to changes of such 

knowledge bases, novel mechanisms are needed that allow for observing the knowledge 

represented in a semantic repository. An approach that is currently gaining popularity in 

this field are semantic publish/subscribe mechanisms. With these mechanisms, it is 

possible to register queries (e.g., using SPARQL [21]) on a semantic repository and to 

subscribe for new results of these queries. When the knowledge represented in the 

semantic repository is updated, the system re-evaluates the queries and notifies the 

subscribers about new query results. 

 
 



Semantic publish/subscribe mechanisms are currently provided by several semantic 

repositories, each exhibiting significant differences regarding performance and 

functional scope (e.g., G-ToPSS [20], OPS [26], TripCom [23], SENS [16]). For the 

development of semantic applications, it therefore needs to be carefully evaluated which 

system best meets the given requirements. However, standardized methods for the 

evaluation of semantic publish/subscribe mechanisms are not yet available. Accounting 

for this, we developed the SEP-BM (Semantic Event Processing Benchmark) 

framework. SEP-BM defines two commonly applicable performance metrics and 

implements a Java framework for measuring these metrics for semantic 

publish/subscribe systems. 

In the last years, a number of benchmark frameworks for semantic repositories have 

been developed (e.g., LUBM [6], UOBM [12], BSBM [1]). These benchmarks are used 

for the assessment of load, reasoning, and query performance of semantic repositories 

(e.g. Sesame [2], Jena [13] or OWLIM [8] etc.) and their reasoning systems (e.g., Pellet 

[24], Racer [7]). A benchmark run typically comprises the following steps: (i) a 

predefined benchmark data set is loaded into the semantic repository, (ii)  additional 

information is inferred using a given benchmark ontology, and (iii) several queries are 

executed against the inferable information. The times required for loading the data and 

for executing the queries are then compared to those of other systems. Unfortunately, 

these frameworks do not allow for a comprehensive evaluation of semantic 

publish/subscribe mechanisms as they only evaluate the performance of a single load, 

reason, and query cycle. In contrast, semantic publish/subscribe systems repeatedly 

execute queries and reasoning cycles in very short time intervals, and several systems 

employ optimization mechanisms that require multiple query or reasoning iterations 

until they reach their optimal performance. The SEP-BM framework takes these factors 

into account by generating sequences of publication and notification operations and 

defining metrics via the average of the measured values. 

Benchmark frameworks comparable to the SEP-BM framework have also been 

developed for traditional publish/subscribe systems (e.g., SPECjms2007 [22]). However, 

these systems are different from semantic publish/subscribe systems as they implement a 

pure store-and-forward approach. Information providers publish messages at the 

message broker, where they are forwarded to the information consumers. In contrast, 

subscribers of a semantic publish/subscribe system are notified about changes in a 

knowledge base. While these changes result from publication (or deletion) operations, 

the clients are not provided with the published information but with notifications about 

the resulting changes. Benchmarks for traditional publish/subscribe systems therefore 

only measure the time between the publication of a message by the information provider 

and the reception of the same message by the information consumer. In contrast, SEP-

BM recognizes the indirect relationship of publications and notifications and measures 

the time between a publication and the notifications resulting from this publication.  

The paper is structured as follows: Section 2 defines two metrics for determining a 

semantic publish/subscribe system’s responsiveness and overall rate of processed 

operations. An overview of the SEP-BM framework implementation is provided in 

Section 3. Section 4 describes the application of the framework in the SENS project 

[16], illustrating its practical use for the identification of performance bottlenecks and 

the development of optimization mechanisms. Finally, conclusions and future work are 

presented in Section 5. 

 
 



2 Benchmark Metrics 

During the development of several semantic applications (e.g. [3][4][5][10][17]), two 

main performance-critical areas have been identified: responsiveness and overall rate of 

processed operations (cf. [15]). We therefore defined two metrics covering these two 

areas: the metric notification time as a measure for responsiveness and the metric 

publication throughput as a measure for the overall rate of processed operations. 

2.1 Notification Time 

The user-perceived responsiveness of a system corresponds to the time between the 

triggering of a particular application activity and the expected application feedback. If an 

application activity involves the interaction with a semantic publish/subscribe system, 

this includes (i) the creation of a request, (ii) sending the request to the semantic 

publish/subscribe system, (iii) processing the request, (iv) sending the generated 

notifications back to the client, and (v) providing the according user feedback (e.g., 

displaying the received information). While the first and the last step are carried out by 

the developed application, steps (ii)-(iv) are taken over by the semantic 

publish/subscribe system and are covered by the following definition of notification 

time: 

 

Definition (Notification Time): The notification time h(notify)  of a notification defines 

the time interval between the invocation of the operation that first allowed for the 

detection of an event and the generation of the notification that describes this event. 

 

Hence, the notification time describes the interval between the first point in time a 

notification could (theoretically) have been generated and the point in time it was really 

generated 

 For determining the responsiveness of an semantic publish/subscribe system, we 

further extend the above definition and define the average notification time h(S) for a 

semantic publish/subscribe system S as the average of all notification times of 

notifications that were generated during a given time interval. 

Fig. 1 illustrates the determination of notification times. It shows an example of a 

sequence of publication requests, the resulting notifications, and the corresponding 

notifications times. The bars show the system’s processing phases which are triggered 

when new information is published.  

In the example, certain processing phases last longer than others. This might, for 

instance, result from different sizes of the published graph data structures or from the 

application of certain optimization mechanisms. As a consequence, also the notification 

times of the resulting notifications range from h(notify2.1) = 40ms to h(notify3.1) = 160ms. 

In total, the three single notification times of the investigated time interval lead to an 

average notification time of h(S) = 100ms. 

 

 
 



Fig. 1. Notification times and average notification time1 

2.2 Publication Throughput 

Throughput is commonly understood as the rate of requests that a system can 

successfully process within a given time interval. In semantic publish/subscribe systems, 

the vast majority of processed operations are publication operations (compared to the 

deletion of knowledge). Hence, the rate of processed publication operations is 

considered the most important indicator for the throughput of a semantic 

publish/subscribe system. We therefore defined the metric publication throughput for 

measuring this rate of processed publication operations as follows: 

 

Definition (Publication Throughput). The publication throughput た(S) of a semantic 

publish/subscribe system S defines the number of publish requests that can be completely 

processed during a given time interval. A publish request is thereby only considered to 

be completely processed, if all resulting notifications have been generated during this 

time interval. 

 

The metric publication throughput therefore describes the number of publish requests 

for which all possible notifications have been generated in a given time interval.  

In most application scenarios, semantic publish/subscribe systems receive publish 

requests in strongly varying time intervals. In some cases, the system needs to process 

multiple requests concurrently; in other cases, the system is in idle mode when a new 

request is received. When multiple requests are processed at the same time, usually quite 

high publication throughput rates can be achieved. RDF graphs published within a short 

time interval can be consolidated to one big graph and the semantic publish/subscribe 

system can evaluate all requests within one single reasoning and querying run. With this 

approach, the publication throughput can be increased almost linearly (with respect to 

the number of concurrently processed request) for up to 100 graphs in many of the 

implementations we investigated (e.g., [9][16]). As a consequence, the worst-case 

                                                           
1 Notifications are given with two subscript numbers. The first one referring to the publication 

operation that triggered the notification and the second one to distinguish notifications that were 

triggered by the same publication operation. 

 
 



publication is to be expected when no two publish requests can be processed at the same 

time. In order to obtain an indicator for such worst-case publication throughput rates, we 

propose to measure the publication of graphs in a sequential order, so that a new graph is 

published immediately after the completion of the preceding processing phase. Such 

non-overlapping sequences of publication operations also often occur in real 

applications, e.g., when semantic publish/subscribe systems are used to implement 

interaction patterns like request/response (two clients alternately publishing new 

information in response to received notifications).  

Fig. 2 shows a semantic publish/subscribe system that is processing such a sequence 

of publications. The figure depicts the generated notifications and shows the resulting 

publication throughput.  

 

Fig. 2. Publication throughput 

 

Here, it is assumed that the semantic publish/subscribe system employs an 

optimization mechanism that allows for more efficient generation of notifications but 

which may also sometimes miss an event (such mechanisms are used in, e.g., [15]). 

Depending on whether or not a notification is generated by the optimization 

mechanisms, the according processing phases exhibit processing times of 70ms and 

120ms, respectively. For determining the publication throughput, only those publish 

requests are considered, for which all notifications have been generated and sent to the 

subscribers within the investigated time interval. This requirement ensures that the 

processing of publication operations (persisting, reasoning, querying, generation of 

notifications) is included in the metric. In the example, the requests for which all 

notifications were generated within this time interval are pub1, pub3, pub4, and pub5. As a 

second notification for pub2 is generated in a later processing phase, this request is not 

taken into account. In total, 4 publish requests were completely processed in the 

investigated time interval of 400ms, resulting in a publication throughput of た(S) =10 

pubs/sec. 

 
 



3 SEP-BM Benchmark Framework 

For measuring the performance of semantic publish/subscribe systems with respect to 

the defined metrics, we developed the SEP-BM (Semantic Event Processing 

Benchmark) framework, consisting of a benchmark base configuration and a Java 

benchmark framework.  

3.1 Benchmark Base Configuration 

The benchmark base configuration comprises a benchmark data set, an ontology that is 

used to infer new information, and 20 query definitions for subscriptions.  

The developed benchmark configuration is based on the LUBM Benchmark [6], the 

most widely used benchmark for the evaluation of semantic repositories (e.g. in [19][6]). 

The LUBM Benchmark was conceived for the assessment of load, reasoning, and query 

performance of semantic repositories. It therefore creates a benchmark data set, loads it 

into the semantic repository, infers additional information using the LUBM ontology, 

and executes 14 queries on this data.  

The LUBM benchmark data set describes master and reference data of universities 

(e.g., statements about professors, students, courses, publications, etc.) and can be 

generated in different sizes. The 14 benchmark queries are defined in such a way that 

they allow drawing conclusions about certain performance characteristics of semantic 

repositories. This way, the performance impact of queries with different selectivity, 

query complexity, reasoning complexity, numbers of variables, etc. can be investigated 

in detail. A comprehensive characterization of these queries is provided in [6].  

In first experiments, we created a benchmark for semantic event processing 

mechanisms with the data and queries defined by the LUBM benchmark framework (see 

[14]). However, it turned out that the LUBM-based benchmark setting did not address 

several performance-relevant areas of semantic publish/subscribe systems in enough 

detail: 

 

• The entire benchmark data set is generated by a data generator component and does 

not contain any user-provided data. E.g., the name of the resource u1d1:Professor1 

in LUBM is “Professor1”. Although some applications, e.g., planning or 

coordination systems, might exclusively work with generated data, most 

applications typically employ both generated and user-provided data.   

• About half of the LUBM queries can typically be evaluated very efficiently even 

with bigger benchmark data sets (i.e., <10ms for a data set size of ~1 million RDF 

statements). For such queries, it is difficult to analyze efficiency of semantic 

publish/subscribe systems, as the measurement inaccuracy is almost as high as the 

actual notification time.  

• Several types of queries that are relevant for a comprehensive evaluation of 

semantic publish/subscribe systems are not covered by the LUBM queries (e.g., 

queries with FILTER or UNION operators to constrain or extend results sets).  

 

 
 



In order to better cover the above points, two extensions for the LUBM setting have 

been defined: an Extended Data Set that defines additional, realistic benchmark data and 

an Extended Query Package consisting of 6 additional benchmark queries.  

 

Extended Data Set 

 

The Extended Data Set defines additional realistic data for several parts of the 

benchmark data set which are extracted from DBPedia2 [11]. The internet data 

repository DBPedia contains structured information from Wikipedia in the form of RDF 

graphs and is used to generate, e.g., first names and surnames for all persons, names for 

universities, real email addresses, telephone numbers, and titles for publications. As not 

only existing data is replaced but also new data is added, the data set of a SEP-BM 

benchmark setting is bigger than the according LUBM data set. For example, a SEP-BM 

benchmark data set that is generated from LUBM(2)3 defines 287 897 explicit RDF 

statements, while the original LUBM(2) data set defines only 230 531 statements.  

                                                          

 

Extended Query Package  

 

For the evaluation of further characteristics of semantic publish/subscribe systems, 6 

additional queries have been defined with a focus on particular performance-relevant 

aspects of a system (queries Q15-Q20):  

 

• Queries Q15 & Q16 return results that are combinations of generated and user-

provided data. These queries are used to analyze the impact of less homogenous 

data on the performance of the event processing mechanisms. 

• Queries Q17 & Q18 return results that contain variable bindings which are not 

contained in one single published graph. These queries are used to investigate the 

performance of the event processing mechanism when notifications need to be 

inferred from multiple graph publications. 

• Queries Q19 & Q20 employ more complex WHERE clauses than those used in the 

LUBM benchmark in order to constrain/extend the queries’ result sets. These 

queries are used to examine how the size of a result set influences the performance 

of the event processing mechanism.  

 

The query statements and a more detailed description of their characteristics are 

provided in Appendix A1. 

 

3.2 Benchmark Framework 

Fig. 3 shows the developed benchmark framework, consisting of two main applications: 

the Configuration Generator, which is used to create a benchmark configuration 

 
2 http://wiki.dbpedia.org 
3 The number in brackets defines the number of described universities and is therefore taken as 

reference number for the size of the used benchmark data set. 

 
 



description, and the Benchmark Runner, which executes the benchmark using this 

configuration. 

 

 

 

 

 

 

 

 

 

 

                                                          

Fig. 3. Benchmark framework components 

 

Configuration Generator 

 

For generating a benchmark configuration description, the Data Generator is first 

employed to generate the benchmark base configuration described in the previous 

section.  

The Publication Sequence Generator then creates a description of a sequence of 

publication operations for a concrete benchmark run. It therefore loads the benchmark 

data and executes all queries of the Extended Query Package. It then creates single 

graphs by selecting the concise bounded descriptions4 of the resources described by the 

query results and generates the publication sequence by randomly selecting an equal 

number of graphs for each query.  

For the correct measurement of notification times, it is further necessary to know 

which published graph allows for the generation of which notifications. The Reference 

Data Generator creates a mapping between notifications and publications describing this 

relationship. It loads the benchmark data, registers all queries, subscribes to these 

queries, and publishes the graphs of the publication sequence. The benchmark 

framework thereby always waits with the invocation of the next publish operation until 

the system has completed the processing of the previous publish operation. No 

optimization mechanisms are employed and it is therefore guaranteed that the 

publication operation that first allowed for the generation of a notification is always the 

one that was invoked immediately before the reception of a notification. Hence, it is 

trivial for the Reference Data Generator to create the according mapping.  

 

Benchmark Runner 

 

The Benchmark Runner executes the actual benchmark. It therefore publishes all 

benchmark data at the semantic publish/subscribe system to be benchmarked, only 

omitting those statements contained in the publication sequence. Then it publishes the 

 
4 Concise bounded description (CBD) [25]: Given a particular node (starting node) in an RDF 

graph, the concise bounded description of the resource denoted by this node comprises all those 

statements of the RDF graph where the subject of the statement is the starting node. 

 

 
 



graphs of the publication sequence, also each time waiting until the previous iteration 

has completed, and it records the send times of the publish requests and the reception 

times of all received notifications.  

When the benchmark run is finished, the Benchmark Data Analyzer determines the 

notification times and publication throughput. For a particular notification, the 

corresponding notification time is determined by calculating the time between the 

reception of the notification and the publication from which this notification resulted 

from (as described by the mapping in the reference data file). 

For determining the publication throughput, the Benchmark Data Analyzer relates the 

number of publish operations to the overall benchmark time.  Furthermore, it also checks 

whether all notifications have been generated during the benchmark run by comparing 

the set of received notifications with those described in the reference data file.  

The obtained benchmark results are written to a report file, also containing detailed 

information about the benchmark setting, number of received notifications, average 

notification time and sequential publication throughput. 

4 Benchmarking a Semantic publish/subscribe system 

In the SENS (Semantic Event Notification System) project [15], a framework is 

developed that adds publish/subscribe functionality to semantic repositories. In this 

project, the SEP-BM framework was used to find performance bottlenecks and to 

identify potential areas of optimization.  

4.1 First SENS Prototype 

In the first prototype of SENS, a very simple event detection approach was chosen, 

which is also implemented in a number of other systems with semantic publish/subscribe 

mechanisms (e.g. in TripCom [18] and G-ToPSS [20]). Each time the knowledge base is 

modified, SENS re-evaluates all registered subscriptions and compares the returned 

result sets with the results sets of the previous evaluation. It generates notifications for 

those results not contained in the result sets before and sends them to the subscribers. 

To evaluate the performance of this approach, SENS was benchmarked with SEP-

BM. For this purpose, a simple adapter had to be implemented, which maps the SENS 

interface to the six interface operations used by SEP-BM (publish, delete, 

createChannel5, deleteChannel, subscribe, unsubscribe). As SEP-BM is based on the 

widely supported Sesame semantic web framework [2], such adapters can usually be 

implemented with a few lines of code. The benchmark was then executed with a 

publication sequence of 300 graphs and the 20 queries registered at SENS (C1-C20). 

The used benchmark data set was generated from the LUBM(10) data set and comprised 

1.6 million explicit RDF statements. Using the LUBM ontology, the reasoning engine 

can infer up to 0.8 million additional implicit statements, resulting in a knowledge base 

of 2.4 million statements in total.  

                                                           
5 In SENS, subscriptions are defined as “channels”. 

 
 



Fig. 4 shows the average notification times measured for SENS with this benchmark 

configuration6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                          

Fig. 4. Notification times of first SENS prototype 

 

While 10 subscriptions could be processed very efficiently, essential delays were 

observed for the other 10 subscriptions (316-3407ms). For applications that need to 

provide immediate user-feedback, notification times of 2 seconds and above would 

probably not be acceptable (C14-C17, C19, C20). 

Fig. 5 further shows the publication throughput rates of the first SENS prototype. For 

better illustration of the critical throughput rates, those rates greater than 25pubs/sec are 

not shown in the figure (marked with “>25”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Publication throughput of first SENS prototype 

 

 
6 All benchmarks were run on a Pentium Core2 Duo 3GHz, 4GB RAM Windows Vista PC. For 

the benchmark runs, server and client were run on the same physical node, so that the 

communication overhead was minimal and did not have a significant impact on the benchmark 

results. 

 
 



Not surprisingly, those channels with low notification times also exhibit high 

publication throughput rates. The efficient evaluation of the respective queries leads to 

good results for both metrics.  

 

Interpretation of Benchmark Results 

 

Considering the characteristics of the queries (Appendix A1 and [6]) used in those 

subscriptions (i.e. channels) with high notification times and low publication throughput, 

it turns out that at least one of the following two properties applies to each of these 

queries: 

 

• Complex reasoning or constraint evaluation: The execution of the query requires 

running complex reasoning tasks or involves the processing of expensive constraint 

evaluations (e.g. string based matching in C19) or join operations (e.g., joins on 

large data sets in C09). 

• Large input and low selectivity: Queries with large input and low selectivity lead 

to large result sets. For the detection of new results, the current result set needs to be 

compared to the previous result set after each publication operation. Hence, very 

large result sets may cause significant delays during publication processing.  

 

Based on these observations, a new optimization approach was developed in the 

SENS project, trying to improve the performance of subscriptions with the above 

properties. This optimization approach and its evaluation using SEP-BM are described in 

the following section. 

4.2 SENS with Heuristics-based Optimization Algorithms  

The developed heuristic-based optimization mechanisms are based on the following 

observation: In many cases, the publication of similar graphs leads to the generation of 

similar notifications. For example, the publication of new information about papers often 

leads to new notifications of subscriptions that report updates of university professors. 

Hence, detecting such similarities will allow for “guessing” which notifications will 

result from a new publication. Testing whether such guessed notifications are really 

valid notifications can be implemented efficiently and takes significantly less time than 

the full evaluation of a subscription. Thus, the generated notifications can be sent to the 

subscribers earlier than in the first prototype of SENS.  

The same mechanisms can also be employed to improve the publication throughput of 

the system. SENS therefore records how many of the notifications are already generated 

by the heuristic algorithms and how many of them are only generated during the full 

evaluation of a subscription. If the rate of heuristic-generated notifications is higher than 

80%, then SENS will not evaluate each subscription immediately after a publication 

operation. It rather relies on the heuristics to generate notifications and only evaluates 

the subscriptions in certain time intervals.  Consequently, more publications can be 

processed in the same time. 

Fig. 6 shows the notification times for SENS without heuristic and for SENS 

employing two heuristic optimization algorithms [15]: The StringRS Heuristic defines 

 
 



similarity via the textual representation of the published graphs and notifications, and the 

GraphSS Heuristic defines similarity via the structure of the published graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Notification times of SENS with heuristic optimization 

 

Employing the StringRS Heuristic, good results could be achieved for those scenarios 

in which mainly generated data was published to the semantic publish/subscribe system. 

With the GraphSS Heuristic, even better notification times could be achieved. The only 

exception is C17, where the generation of notifications is only possible based on the 

textual similarity of graphs and notifications. In summary, the average notification time 

of all notifications generated during the benchmark could be reduced from 1013ms to 

461ms with the StringRS Heuristic and to 260ms with the GraphSS Heuristic. 

Fig. 7 further shows the publication throughput achieved by employing heuristic 

optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Publication throughput of SENS with heuristic optimization 

 

The average publication throughput rates of the 10 channels with low publication 

throughput could be increased by a factor of 1.76 using the StringRS Heuristic and by a 

factor of 5.9 with the GraphSS Heuristic. 

 

 
 



Interpretation of Benchmark Results 

 

By relating the benchmark results to the characteristics of the subscription’s query 

statements, several conclusions about the application of heuristics-based optimization 

mechanisms can be drawn. First of all, the following properties turn out to represent 

general prerequisites for the successful employment of heuristic optimization: 

 

P1. Recurring events: A subscription reports a series of events (i.e., it is not only 

used to detect a one-time event). 

P2. Small number of variables: A small number of variables (ideally ≤ 3) are used 

in a subscription's query statement. 

P3. Variable binding values are contained in a single graph: All (or at least most) 

variable binding values of a notification are contained in a single published 

graph. 

P4. High number of notifications: A subscription generates notifications very 

frequently. 

 

Furthermore, the following characteristics had positive effects on the application of 

the StringRS Heuristic: 

 

P5. Graphs of equal size: Graphs leading to notifications of the same subscriptions 

are frequently of the same size (i.e. consist of the same number of string blocks). 

P6. Equal substrings in graphs: Graphs leading to notifications of the same 

subscription contain a high number of equal substrings. 

P7. Equal substrings in notifications: Notifications of the same subscription contain 

a high number of equal substrings. 

 

Finally, the subsequent characteristics had positive effects on the application of the 

GraphSS Heuristic: 

 

P8. Same "main" resource of graphs: Graphs leading to notifications of the same 

subscription frequently describe the same resource type (e.g., publications about 

papers lead to notifications about professors).  

P9. Similar structure of graphs: The structural representations of the published 

graphs are similar (i.e. they consist of the same RDF property values). 

P10.  Binding value distribution: If a subscription generates notifications with 

binding values coming from different publications, better results are achieved if 

publications lead to at most one notification for this subscription. 

5 Conclusion 

In this paper we presented SEP-BM, a benchmark framework for semantic 

publish/subscribe systems. We described a benchmark data set and a number of query 

statements for this framework and defined two concrete metrics to be measured during a 

benchmark run. The metric notification time is used to evaluate the responsiveness of a 

 
 



semantic publish/subscribe system and the metric publication throughput is used to 

evaluate the overall rate of operations that can be processed in a given time interval. 

The application of the benchmark framework in the SENS project allowed us to 

identify performance-critical use case scenarios and pointed out where optimization 

mechanisms could help to improve the performance. Based on the evaluation of the 

benchmark results, a heuristics-based optimization mechanism was developed that tries 

to take advantage of those properties that originally led to performance problems: (i) the 

need for complex reasoning and querying tasks during the evaluation of subscriptions 

and (ii) large input sets and low selectivity of the subscription’s query statements. 

Running the same benchmarks with SENS using the developed optimization 

mechanisms showed that most of the critical application scenarios could be handled 

much more efficiently. In summery, the employment of SEP-BM allowed us to (i) 

identify potential performance bottlenecks of the investigated semantic publish/subscribe 

system, (ii) gain insights about the causes of these performance bottlenecks and point out 

directions for possible optimizations, and (iii) quantify the concrete performance 

improvements when applying optimization mechanisms.   

Future work will include the development of a systematic characterization of the 

benchmark subscription queries. So far, conclusions about certain performance 

properties could only be provided by a step-by-step interpretation of the textual 

descriptions of these queries. Here, a precise characterization of the queries with respect 

to a defined set of criteria will allow for a more systematic and automated evaluation of 

semantic publish/subscribe systems. 
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Appendix A1 – Extended Query Package 
The following prefix is used for all queries.  

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX uni: <http://www.lehigh.edu/~zhp2/2004/0401/univ-

bench.owl#> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX u0d0: <http://www.Department0.University0.edu/> 

 

The SEP-BM Extended Query Package consists of the 14 LUBM queries [6] and the 

following six additional queries:  

 

Query Q15 

PREFIX … 

SELECT ?S ?N 

WHERE {  

  ?S rdf:type uni:Student. 

  ?S uni:name ?N. 

} 
 

Query Q15 extends query Q06 of the LUBM Benchmark by also retrieving the surname 

of a student, not only the key URI.  Hence, the query result set also contains data 

generated by the Data Enricher and is therefore much less homogenous than the result 

set of query Q06.  

 

 
 



Query Q16 

PREFIX … 

SELECT ?X ?N ?E  

WHERE {  

  ?X rdf:type uni:Student.  

  ?X foaf:mbox ?E.  

} 

 

Query Q16 is a modification of query Q15; it retrieves the email address instead of the 

name of the student. As opposed to the students’ names, the email addresses also contain 

characters that are recognized as delimiter characters by the StringSS Heuristic. 

 

 

Query Q17  

PREFIX … 

SELECT ?S ?U  

  WHERE {  

  ?S rdf:type uni:Student.  

  ?S uni:memberOf ?D.  

  ?D uni:subOrganizationOf ?U.  

} 

 

Query 17 returns all students together with their department and university. Here, 

heuristic-based notification generation is more difficult as graphs about students only 

contain a reference to the student’s department but not to its university. However, the 

university may be derived from the URI string of the department (e.g., the department 

“http://www.complang.tuwien.ac.at” belongs to the university 

“http://www.tuwien.ac.at”). 

 

 

Query Q18 

PREFIX … 

SELECT ?S ?C ?N  

WHERE {  

  ?S rdf:type uni:GraduateStudent.  

  ?S uni:takesCourse ?C.  

  ?C uni:name ?N.  

} 

 

Query Q18 retrieves, similar to Q17, results with variable binding values that need to be 

inferred from multiple published graphs. However, the heuristics-based generation of 

notifications for a channel with this query is even more difficult, since none of the 

variables directly contains information about any other variable.  

 

 
 



 
 

Query Q19  

PREFIX … 

SELECT ?S  

WHERE {  

  ?S rdf:type uni:Student.  

  ?S foaf:surname ?N.  

  FILTER regex(?N, \"^(A|B|C|D)\")  

} 

 

Query Q19 employs a FILTER expression for defining an additional constraint for 

returned results. Consequently, the processing effort during the query evaluation phase is 

increased although the result set will be smaller than without using the FILTER 

expression.  

 

 

Query Q20  

PREFIX … 

SELECT ?P ?N  

WHERE {  

  {?P rdf:type uni:Student.  

   ?P uni:name ?N. }  

  UNION  

  {?P rdf:type uni:Employee.  

   ?P uni:name ?N. }   

} 

 

Query Q20 combines the results of two queries by means of the UNION operator in the 

WHERE clause. This leads to a larger result set and increases the variability of the 

graphs that lead to notifications for the corresponding subscriptions. 
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