
Technical Report

A Survey on a State of the Practice in
Video Game Development

Jürgen Musil1
Angelika Schweda1

Dietmar Winkler2
Stefan Biffl2

Institute of Software Technology and Interactive Systems

Favoritenstr. 9-11, A-1040 Vienna, Austria

1{jmusil, angelika} @computer.org
2{dietmar.winkler, Stefan.biffl} @tuwien.ac.at

Technical Report No. IFS-QSE 10/04
Issued: March 2010

A Survey on the State of the Practice

in Video Game Software Development

Juergen Musil1, Angelika Schweda1, Dietmar Winkler2, Stefan Biffl2

Institute of Software Technology and Interactive Systems

Vienna University of Technology
1{jmusil, angelika}@computer.org, 2{Dietmar.Winkler, Stefan.Biffl}@tuwien.ac.at

Abstract

Video Game Software Development is a promising
area of empirical research because our first obser-
vations in industry environment identified a lack
of a systematic process and method support and
rarely conducted/documented studies. Neverthe-
less, video games - specific types of software prod-
ucts - focus strongly on user interface and game
design. Thus, engineering processes, methods for
game construction and verification/validation, and
best-practices, derived from traditional software en-
gineering, might be applicable in context of video
game development. We selected the Austrian games
industry as a manageable and promising starting
point for systematically capturing the state-of-the
practice in Video game development. In this paper
we present the survey design and report on the first
results of a national survey in the Austrian games
industry. The results of the survey showed that the
Austrian games industry is organized in a set of
small and young studios with the trend to ad-hoc
and flexible development processes and limitations
in systematic method support.

1 Introduction

Video game software development (VGSD) has
maturated within only five decades from the hobby
of talented computer scientists into a billion dollar
industry that today easily outperforms the movies
industry in gross revenue. Top game software
projects have become artistic, technological and fi-
nancial challenges with development costs ranging
from few million up to 100 million dollars1. Ac-
cording to the recent PricewaterhouseCoopers me-
dia forecast2, the video game business is predicted a

1Digital Battle. http://www.digitalbattle.com/2010/02/
20/top-10-most-expensive-video-games-budgets-ever
(last visited 03/01/2010).

2PricewaterhouseCoopers. Global entertainment and
media outlook 2009-2013. PricewaterhouseCoopers LLP.

constant annual growth through 2013, seeing video
games on top in home entertainment spending. It
seems that such results draw a promising future
for digital games, the development and production
practices of the games industry are far from the
professional level that sales figures may suggest.
Game developers have to face workflow integration
problems, difficulties in requirement elicitation and
workload fluctuations due to a lack of verified do-
main tailord processes and techniques. Although
the video games industry seems rather turbulent, it
presents itself as an interesting enviroment for em-
pricial software engineering that varies significantly
from traditional software domains. Video games
are interactive entertaiment products of high sys-
tem complexity that are built upon multiple com-
puter science disciplines including artificial intelli-
gence, computer graphics, distributed systems and
human computer interaction. Their production is
time critical and involves multiple heterogenious
disciplines including experts from non-engineering
domains (e.g. arts, design, animation, creative
writing). Because games premier purpose is amuse-
ment, validation of their entertaining impact relies
on qualitative and quantitvative methods3. A good
example demonstrating that software engineering
can indeed learn things from video game develop-
ment is e.g. in the area of rapid development of
new software products [25].
At the example of a state of the practice survey
in the Austrian games industry, we therefore seek
to investigate if empirical/evidence-based software
engineering can be of assistance in providing so-
lutions for problems in VGSD and in identifying
similarities and differences between game and non-
game software development. Furthermore, the re-
sults can (a) support video game producers in in-
troducing lessons learn- ed from traditional soft-

2009.
3Microsoft Game Studios, Games User Research

Group. http://mgsuserresearch.com/publications/ (last vis-
ited 03/01/2010).

1

ware engineering to increase process and product
quality and (b) can be the starting point for a
more detailed analysis of video game development
practice in a larger context. We are interested if
conflict areas in processes and techniques in VGSD
could be found that would be possible candidates
for techniques from existing best-practice software
engineering. Also we seek to retrieve hands-on in-
formation about games industry-specific problems
called ”feature creep” and ”crunch time” and their
causes.
The remainder of this paper is structured as follows:
Section 2 presents related work on video game de-
velopment and best practice software engineering
approaches. Section 3 illustrates the research issues
with focus on best-practices in video game develop-
ment. We described the study design of the survey
in section 4 and provide initial results on the survey
in section 5. Section 6 presents the discussion. Fi-
nally, section 7 concludes and identifies next steps
for future work.

2 Related Prior Work

This section summarizes related work on VGSD
and best-practices software engineering approaches
with a particular focus on: (1) Examining the
state of empirical studies in game software devel-
opment processes. (2) Identifying major challenges
in game software development and existing conflict
areas. (3) Discussing the contemporary importance
of best-practice software engineering.

2.1 Existing Empirical Studies

We have reviewed existing literature with particu-
lar attention on empirical studies of game develop-
ment practices and processes. Unexpectedly, we
have identified a significant lack of development
process-focused publications and empirical studies,
after investigating major computer science-related
academic platforms (ACM, IEEE, Springer) as well
as game industry/game studies related portals (DI-
GRA, Game Studies, Gamasutra). The only cur-
rent study among game studios that is methodically
comparable with our presented work is the State
of Game Development 2010 Survey4 from Think
Services. The difference between our research and
the Think Services survey is that our survey aims
to cover the Austrian game studios and to recheck
results from existing studies. Whereby the Think
Services survey has been conducted among clients

4Game Developer Research. State of Game Development
2009-2010 Survey. UBM Think Services. San Francisco,
CA, 2010.

of Think Service products and questions aim pre-
dominantly demographics, hardware/software tool
usage, project budgeting and purchasing behavior.
A survey [16] dealing exclusively with game devel-
oper demographics has been conducted by the In-
ternational Game Developers Association (IGDA)
in 2005.
Since there is no widely validated body of knowl-
edge in VGSD available to date, we therefore also
propose to follow the five steps of evidence-based
software engineering according to [10, 20]:

1. Converting the need for information into an
answerable question.

2. Tracking down the best evidence with which
to answer the question.

3. Critically appraising that evidence for its va-
lidity, impact, and applicability.

4. Integrating the critical appraisal with software
engineering expertise and stakeholders’ values.

5. Evaluating effectiveness and efficiency in exe-
cuting steps 1-4 and seeking ways to improve
these.

2.2 Video game development

Peltoniemi [26] evaluated the maturation process of
the game sector and concludes that the game devel-
opment sector after decades is still less developed
than the automobile industry in its most turbulent
years of industry formation. One reason is that
video game development has become increasingly
challenging over the last decade [9, 12] with global
competition of creative concepts and a strong in-
crease in systems complexity [15]. Games industry
veteran Jonathan Blow has identified the follow-
ing obstacles in current video game development
[9]: (a) workflow problems in programming, testing
and content production (e.g. 3D modeling, game
level design), (b) problems because of the concur-
rent development for multiple target platforms (e.g.
PC, Playstation 3), (c) integration problems due
to a lack of domain-specific software patterns and
a dependence on third-party components/game en-
gines in order to maintain project timeliness, (d)
project risks from trade-offs between game design
and product-value based considerations that Blow
summarizes with the questions ”how will this never-
implemented feature feel to the end user? Is it go-
ing to be worth [...] to implement it?” [9].
Petrillo et al. [27] note that many problems of
the software industry occur in the electronic games
industry as well. In their postmortem analysis
Petrillo et al. identified, besides technological prob-
lems that have been discussed by Blow [9], also

2

scheduling problems and problems of scope:
Scheduling problems occur in the form of classical
project delays and crunch time, but are also often
contributory caused by technological problems [27].
Crunch time is a video games industry term for
phases of extensive overtime work lasting from one
or two weeks up to some months in the worst case.
Crunch time is regarded as a serious and endur-
ing problem by developers5 that has led to lawsuits
against large game companies [2]. The most recent
incident6 has again confirmed Peltoniemi’s theory
about the video games industry’s maturation level
[26] and nurtures assumptions about deep-rooted
production process difficulties.
Problems of scope occur in the form of unrealisti-
cally large project size, design problems, the cut-
ting of features and a behavior that is called fea-
ture creep [15, 27]. Chandler [12] notes on fea-
ture creep that it ”occurs if additional features are
added without adjusting the other project variables
(time, resources and quality) to accommodate the
additional work”. Frequent and late changing re-
quirements hinder systemic approaches (V-Model
XT) and foster a trend to agile game development
(e.g. Scrum) instead.
Project scope problems have also been confirmed
by Callele et al. [11] who identified the following
areas where VGSD benefits from requirement en-
gineering and project management best-practices:
”(1) communication between stakeholders of dis-
parate background, (2) remaining focused on the
goal and resisting feature creep, (3) influence of
prior work (e.g. building a new game on top of
an existing game), (4) media and technology inter-
action and integration, (5) the importance of non-
functional requirements, and (6) gameplay require-
ments” [11]. Callele et al. note that the domination
of non-functional-requirements and especially the
category of gameplay requirements are character-
istic for the game software domain and that these
aspects require further investigation due to a lack
of foundation research [11].

Another inherent challenge is heterogeneity of
disciplines (e.g. arts, engineering) that collabora-
tively practice game development and arising in-
tegration conflicts [15]. On the example of the
game title Dragon Age: Origins we demonstrate
the semantic ambiguity by the usage of the word
design: software system design, user interface de-
sign, game design, art direction, animation and

5Grant, C. Epic’s Mike Capps responds to accusations
of ’exploitative’ working conditions. In Joystiq. We-
blogs Inc. Network. 22. April, 2009. Available at
http://www.joystiq.com (last visited 03/01/2010).

6Rockstar Spouse. Wives of Rockstar San Diego em-
ployees have collected themselves. In Gamasutra. United
Business Media LLC. 7. January, 2010. Available at
http://www.gamasutra.com (last visited 03/01/2010).

cinematic design, audio/voice-over direction. Al-
though the previous list is not exhaustive it still
gives the impression that it resembles more activ-
ities required for a hollywood movie, it is a fact
that video games have arrived manufacturing com-
plexity and budgeting of even such. The signifi-
cant increase in production quality over the previ-
ous years becomes particularly apparent when com-
paring material of the movie Final Fantasy: The
Spirits Within and the state-of-the-art game title
Final Fantasy XIII. Peltoniemi [26] concludes that
what makes the games industry different is the cre-
ation of non-utilitarian products and proposes the
classification of the game sector in the category of
cultural and creative industries (e.g. movies, mu-
sic) that have the following key economic charac-
teristics: monopolistic competition and horizontal
differentiation, hits and misses, increasing returns,
gatekeepers, taste formation and experience goods,
skewed labor markets, majors and independents
[26]. The circumstance that the games industry is
derived from the software industry but located in
another industry family that produces a different
type of goods hinders direct adoption of proven,
established software development approaches and
is a main reason for many misunderstandings be-
tween these professional domains. Concluding, the
key challenges for empirical research in video game
development can be summarized as:

1. Integration problems in workflow due to de-
velopment across heterogeneous disciplines de-
mand tailored process support for arts and en-
gineering domains.

2. Requirement elicitation problems because of
an emphasis on non-functional requirements,
”gameplay” requirements and a dominance of
audio-visual, narrative and interactive aesthet-
ics in the end product.

3. Identification of methods that address domain-
specific risk assessment, value-based consider-
ation and verification and validation.

4. Challenges for product family engineering,
since current installments of video games series
are concurrently developed for multiple (het-
erogeneous) target platforms and have hard
deadlines (e.g. Christmas season).

Empirical software engineering can play an impor-
tant role in identifying practices and processes that
address these challenges.

3

2.3 Best-practice software engineer-
ing

The main goal of business IT software development,
e.g. database driven systems and web applications,
is the construction of high-quality software prod-
ucts [1, 29]. In contrast to game development, busi-
ness IT development focuses on databases, business
logic, and user interfaces enabling the interaction
with underlying systems. Nevertheless, the user
interface is predominantly limited to a functional
behavior.
Traditional software engineering best-practices in-
clude (a) software processes, (b) constructive ap-
proaches, and (c) analytical approaches for verifi-
cation and validation purposes. Software processes
provide sequences of steps for project planning,
monitoring and control. Traditional software en-
gineering processes, e.g. V-Model7 and Rational
Unified Process [24] focus on separated sequences
of steps for project planning with limitations in
addressing frequent changing requirements. Flex-
ible and agile approaches, e.g. eXtreme program-
ming and Scrum, support frequent changing re-
quirements by providing a flexible structure by pro-
viding small and high-efficient teams [5, 28].
Nevertheless, methods are necessary to (a) con-
struct valuable products and (b) to verify and val-
idate deliverables. Products can be based on mod-
els [7] and tests [4] within an integrated develop-
ment environment. Early definition and execution
of test cases based on models enables continuous
integration strategies (CI&T) [14] and can enable
frequent test runs, early availability of components
and systems functions and foster frequent changing
requirements during project duration. Thus, CI&T
approaches are promising approaches for VGSD be-
cause of high flexible process and method support.
Additionally, introducing best-practice software en-
gineering approaches can help improving game de-
velopment practices. Our research showed that
there is little research regarding game development
practices.

As a reaction on the absence of related empiri-
cal work and to find out if empirical software en-
gineering can be helpful in investigating the rather
unknown domain of VGSD, we consider it neces-
sary to extend the existing knowledge by collecting
hands-on information about the state of the prac-
tice at the example of the Austrian games industry.

3 Research Issues

Little research has done to capture game develop-
ment practices. Thus we see the need to capture

7http://www.v-model-xt.de (last visited 3/3/2010).

best-practices in the video game development prac-
tices in an systematic survey in Austria. Based on
the related work, we have set our focus on workflow
integration problems and identified a set of research
questions with focus on the state of the practice in
the Austrian games industry.

RQ1 - Studio distribution. Since there is no ex-
isting information about the distribution of game
studios available, we need basic data about studio
demographics. Depending if the Austrian games in-
dustry is dominated by major or independent stu-
dios [26] or a mixture of both, different further re-
search steps would need to be taken.

RQ2 - Process Support and Method Application
We are interested to see how far development pro-
cesses are matured and to what extend agile pro-
cesses and techniques like automated testing or con-
tinuos integration one applied. Berner et al [6] show
that test automation is still inappropriately han-
dled in traditional software industry and we expect
a worse situation in the games industry. We are
also interested to see how far automation is used
with respect to development phases and overall stu-
dio size. We further assume that user-interaction-
focused techniques like interaction sketching tool-
ing and tailored scripting languages could be of par-
ticular interest for the studios.

RQ3 - Feature creep and crunch time affliction.
Petrillo’s post-mortem study [27] sets crunch time
affliction with 45% of the examined (major) studios
(average team size of 22). We assume a higher per-
centage of studios suffering under low to mediocre
pressure of crunch time, since: (a) the majority of
examined studios are seasoned and rely on estab-
lished, streamlined production processes, and (b)
depending on the game type we expect different
affliction rates.

4 Study Design

This section describes the basic setting of an online
survey to capture the state of the practice in the
Austrian games industry. Our study design is based
on the study guidelines of Kitchenham et al. [23],
Wohlin et al. [30] and the reporting guidelines of
Jedlitschka et al. [17].

4.1 Survey process

The applied survey process is sequential and sep-
arated into (1) preparation phase, (2) execution
phase and (3) data analysis and evaluation phase.
A key requirement that has to be guaranteed dur-
ing the whole process is participants’ anonymity
and confidentiality of answers.

4

1. Preparation phase
The questionnaire design is based on the Goal-
Question-Metric approach proposed by Basili et al.
[3]. Figure 1 shows the study design where the sur-

Figure 1: Survey design based on GQM-approach.

vey metrics are derived from the research questions.
The concrete survey questions are structured with
regards to the developed metrics. After reviews
by game designers and after redesign, the question-
naire is published via Google Docs.

2. Execution phase
On October 1st 2009 the participating game studios
have been invited via e-mail to the survey and in-
formed about its purpose and benefits. Reminder
e-mails are sent to the studios to invite them to
complete the survey, two weeks after the initial e-
mail and three days before the closing at the end
of October.

3. Data analysis and evaluation
After closing the survey we start the analysis phase
and evaluate the responses. In a first step, the key
characteristics are identified using mean and stan-
dard deviation. In a second step we analyze the
collected data on the basis of the defined metrics
and research questions.

Metrics
This section defines the metrics that we have devel-
oped from the research questions and that are used
in the current study.

M1 - Studio distribution. Since game studios are
part of creative industries [26] we distinguish be-
tween a major and independent studio type and
therefore treat their data separately. Independent
studios are categorized as small and self-funded
whereby major studios have a larger staff size and
are mainly publisher-dependent. As key studio
characteristics we have defined staff size, average
development time, the number of released original
games and the target platforms.

M2 - Process Support and Method Application.
Processes are grouped into a flexible (e.g. Scrum),
traditional (e.g. PSP) and unstructured (e.g.
greedy approach) type. Tooling is composed from

the domains of software engineering and interaction
design. Correlations between processes and tools
provide an estimate about the similarity of software
development in VGSD and traditional software en-
gineering.

M3 - Feature creep and crunch time affliction.
The incidence of feature creep and crunch time
shows how strong the industry is affected. Cor-
relation of both issues could be an indication for
additional causes. In this case the data should be
analyzed with respect to characteristic patterns.

4.2 Survey Material

The survey is executed in form of an online-
questionnaire which is hosted via Google. Partic-
ipants can complete and submit the questionnaire
directly in their web browser and submissions are
stored anonymously in an online spread sheet. The
questionnaire is arranged in a way, so that ques-
tion formulations and ordering do not influence the
respondent’s answers [18]. Once the questionnaire
was finished, the draft has been provided for re-
view to a group of industry experts. Moreover
the final draft has been reviewed by two Austrian
game designers. The questionnaire is divided into
four question blocks: (1) demographical informa-
tion, (2) processes & tooling, (3) features, require-
ments, and (4) testing.

Section Questions Share

Demographical Information 12 48%

Processes & Tooling 6 24%

Features, Requirements 4 16%

Testing 3 12%

Total: 25 100%

Table 1: Distribution of topics and survey ques-
tions.

Kitchenham et al. recommend standardized re-
sponse formats [22], since open questions are more
difficult to analyze. We completely omit open ques-
tions and only use closed questions instead. An ex-
ception is the ”Other” field at some questions where
the respondent can provide an individual answer.
The questionnaire consists of a mixture of three
different types of questions. We use Likert scale of
an ordinal scale between 1-6 to measure the level of
agreement or disagreement to a statement as well
as multiple/single choice answers.

4.3 Participants

Survey participants have been selected among all
game studios in Austria. To make sure that as
many studios as possible are included, a list of

5

prospective survey candidates has been provided
for review during a regular game developer meet-
ing in Vienna. 20 studios could be identified and
have been invited to participate in the survey. The
studios have been informed via e-mail to the stu-
dio’s technical lead explaining purpose and benefit
of the survey. The e-mail included a direct link to
the questionnaire.

4.4 Data analysis process

Before starting with the analysis process it is nec-
essary to check data validity. Kitchenham et al.
[19] recommend first to vet the responses for con-
sistency and completeness including checks if all
questions are answered correctly so that they can
be analyzed with regards to the defined metrics. To
be able to interpret the collected data, the following
steps are defined:

1. A basic evaluation is performed using descrip-
tive statistics. For a brief overview, we present the
most interesting aspects of the data set and show
central tendencies and dispersions using statistics
for numerical values like total number of respon-
dents (N), mean and standard deviation.

2. The data are analyzed with respect to the re-
search issues. We use histograms to visualize distri-
bution density of variables and scatter plots for as-
sessing dependencies between variables. With scat-
ter plots clusters should be identified and possible
correlations observed.

4.5 Threats to validity

This section discusses potential validity threats to
this study and how they will be mitigated [23, 30].

Internal Validity. To ensure internal validity
the following measures have been taken:

• To guarantee objective evaluation we reduce
bias by applying an appropriate level of blind-
ing [23] and by using blind analysis, so that
researchers do not adulterate analysis by an-
ticipating results. In order to prevent invalid
results because of mixing major and indepen-
dent studio data [12] it is important to analyze
these types separated.

• The design of the demographic-related ques-
tions is based on the experiences from the
IGDA game developer demographics survey
[16].

• To ensure industrial relevance of questions we
have conducted reviews [18] of the survey’s
content by experts from the national games
industry. The expert feedback was used to
counter-check the consistency and integrity of
the questionnaire.

External Validity. To ensure external validity
the following measures have been taken:

• Participants were selected among all known
game studios that we collect in a list which
is extended by reviews by the national com-
munity.

• The questionnaire is engineering-focused
and targets the studio’s lead program-
mer/developer.

• The results might suffer from the survey’s non-
response rate [21]. We minimize the possibil-
ity of a high non-response rate by sending re-
minder e-mails and by particularly promoting
the questionnaire in the regional community.

5 Results

After closing the questionnaire the data are checked
for consistency and completeness [19]. The survey’s
response rate is 65% that is 13 (valid N) of 20 in-
vited studios. Table 2 summarizes the main fea-
tures of the collected data as a basic evaluation.
Based on the mean the dominant studio type can
be identified as independent with a staff size of 1-
4. The average duration of a project iteration is
2-4 weeks. The highest standard deviation has the
average development time with a mean of 1 1/2
years. On a scale of 1 (never) to 6 (every time):
(a) there is a mean of 3.5 to completion on time
with high standard deviation, (b) there is a mean
of 3.2 to crunch time affliction with some standard
deviation and (c) there is a mean of 3.5 to feature
creep occurrence with a little bit standard devia-
tion. The results in the following are ordered and
grouped according to the previously presented met-
rics.

Variable Mean STDV

studio type 1.9 0.38

staff size 1.6 0.87

feature creep 3.5 1.05

project iteration length 2.0 1.17

crunch time 3.2 1.17

completed on time 3.5 1.45

average development time 3.0 1.96

Table 2: Descriptive statistics of key variables.

1. Studio distribution
Austria’s games industry is still in its infancy and
the results emphasize this situation, as the majority
(84.6%) of the game sector consists of independent
studios and only 15.4% are major studios. Most
independent studios have a small staff size of 1-4

6

(72.7%) which we assume because of a small job
market, recruitment difficulties and funding prob-
lems. The main platforms for which the indepen-
dent studios develop are PC (54.5%) and iPhone
(45.5%) and the majority has released 2 original
games (36.4%). The average development time is
uniformly distributed: 1/2 year (36.4%), 1 year
(18.2%), > 2 years (18.2%). Short projects with
minimal development time are mostly developed,
due to low budgets and small studio staff size.
Due to the availability of more budget, major stu-
dios also develop for more expensive platforms
like Xbox 360 (100%) and PC (100%) and one
part of the studios has released 3-4 original games
(50%), the other part has released > 10 games
(50%). They produce more complex applications
with longer development time so their staff size is
> 15 (100%). The average development time per
game of the major studios is 1-2 years (100%). Ta-
ble 3 shows a short comparison of the demographic
results depending on the studio type.

Independent Major

(84.6%) (15.4%)

staff size 1-4 > 15

development time 1/2 year 1-2 years

released games 2 3-4, > 10

platforms PC, iPhone Xbox 360, PC

Table 3: Summary of studio results.

2. Process Support and Method Applica-
tion
The 9 process methods that were available for se-
lection in the questionnaire are separated into the
groups of (a) flexible8, (b) traditional9, (c) unstruc-
tured10 processes. Figure 2 shows that the ma-
jority of studios uses flexible processes and Scrum
is the most popular process for developing games
among independent and major studios (61.5%).
The trend to flexible process methods also has an
effect on project iterations which have a duration
of < 2 weeks in independent studios (45.5%) and
2-4 weeks in major studios (100%).
Figure 3 shows an overview of the tools and tech-
nologies that are used to support the development
process. All studios use instant messaging, e-mails
and collaboration tools to improve their commu-
nication. Versioning tools are applied for change
management by 76.9% of the Austrian studios.
About half of the studios use white boards (61.5%)
and interaction sketching tools (46.2%). Some stu-
dios also use the advantages of lightweight pro-

8Scrum, eXtreme Programming, agile/lean Techniques
9Rational Unified Process (RUP), Crystal Clear, Per-

sonal/Team Software Process (PSP/TSP), V-Model
10Other

Figure 2: Distribution of development approaches.

Figure 3: Overview of used tools and technologies.

gramming languages/scripting technologies (e.g.
Lua) for rapid programming of game logic (30.8%).
Object-oriented modeling tools are rarely used
(54.6%) for modeling system design and better un-
derstanding the problem domain in the indepen-
dent studios, and 27.3% never use such tools. On
the other side all major studios use modeling tools
(100%).
Test automation is used by only 30.8% of the re-
spondent studios. The reasons that only few stu-
dios use test automation as well as modeling tools
are debatable, e.g. due to development time, staff
size or little knowledge about these tools.
All studios use in-house testing to handle testing.
Besides all major studios also outsource testing and
let their publisher take care of testing. Test phases
are run in all studios multiple times during an it-
eration (53.8%) or at the end of every iteration
(38.5%).

7

Development Tools Development Process

Scrum XP: Extreme Agile/Lean Other
Programming Techniques

Instant Messaging 100.0% 100.0% 100.0% 100.0%

E-Mail 100.0% 100.0% 100.0% 100.0%

Collaboration Tools 100.0% 100.0% 100.0% 100.0%

Versioning Systems 87.5% 50.0% 100.0% 66.7%

White Boards 75.0% 100.0% 66.7% 33.3%

Interaction Sketching Tools 50.0% 50.0% 66.7% 66.7%

Scripting Technology 25.0% 50.0% 0.0% 33.3%

Test Automation 37.5% 0.0% 33.3% 33.3%

Integration Servers 37.5% 0.0% 33.3% 0.0%

Other 12.5% 50.0% 33.3% 33.3%

Production Management Software 12.5% 0.0% 0.0% 0.0%

Table 4: Distribution of development tools within process methods (% within development process).

Mostly the used tools depend on the applied pro-
cess method, but the results show that this assump-
tion is not always valid. Table 4 should amplify
this situation. The results demonstrate the usage
of tools in a certain process.
Although the majority of studios relies on flexible
processes, integration severs (23.1%) and produc-
tion management software (7.7%) is rarely used to
support these processes.
As one result of the tooling-findings, problems such
as feature creep, release delays and cutting features
often exist. The advantages of the combination
of good project organization and agile/lean tech-
niques preserves direction on the one side and al-
lows reacting on ad-hoc changes on the other side.

3. Feature creep and crunch time affliction
77% of the respondent studios are occasionally af-
fected by feature creep, no studio answered that
feature creep did not happen and 7.7% responded
that feature creep happens every time. Teams are
occasionally affected by crunch time (61.6%). Only
7.7% reply to crunch time ”never” and nobody an-
swers ”every time” which constitutes a good result.
Depending on the game type different crunch time
affliction rates can be observed. The lowest fre-
quency of crunch time is shown in the development
of mobile games. In contrast, during the develop-
ment of virtual worlds/MMOG crunch time occurs
more frequently.
A correlation between crunch time and feature
creep exists and is shown in figure 4 where a propor-
tional clustering between both topics can be seen.
As software development, VGSD is rather volatile,
since only a minority of 30.8% of specified features
remain unchanged during development. Results

Figure 4: Characteristic grouping of feature creep
and crunch time effects (the thickness of circles rep-
resents the frequency of response).

show that Austrian game development projects are
sometimes completed on time (46.2%) and ”every
time” by only 7.7%. There are even studios which
never complete their projects on time (15.4%).

6 Discussion

In this section we present the conclusions based
on the collected data and the results we have found.

1. Studio distribution
Austria’s games industry is dominated by inde-
pendent studios founded within the last years
with a small staff size between 1-4 and few games

8

released (∼2). This outcome is rather surprising,
since it is widely spread that major studios would
be predominant. With such characteristics, the
Austrian games industry can be more compared
with the industry of the Netherlands, having
a strong independent games industry, than the
highly developed major U.S. industry. This is
especially problematic, since most game devel-
opment literature comes from the United States,
targeting complexity and problem dimensions
that have not yet being reached by the Austrian
industry. We assume key reasons for the current
studio constellation in funding, recruitment and
eduction. Low project budgets due to difficulties
in initial project funding and acquisition of risk
capital forces studios to maintain small staff sizes,
to target platforms with low entry costs (PC,
iPhone) and projects with short development
time (1/2 - 1 year). Even if a studio would be
able to acquire enough capital to develop a larger
project, it would face the challenge of finding
applicants for ”talent”-oriented job positions with
an artistic/creative focus (e.g. game designer,
animator and graphic designer) on a national level.
Our results also show a window of opportunity
for game educators. Many current projects are
developed within group-sized teams over a time
of 1/2 - 1 year with low-cost technology, so such
projects would be also well suited to be developed
within lab classes or practical courses during a
semester. Nevertheless, further research is required
to identify if funding and recruitment are indeed
the driving factors that slowdowns the prospering
of Austria’s games industry.

2. Process Support and Method Applica-
tion
The dominant process methodologies are flexible
(Figure 2) followed by an unstructured (greedy)
approach. Scrum is used by the majority of the
studios and by all major studios. There are several
benefits from using this method, e.g. easy to
learn, simple to use, clearly defined roles and
easy handling of changes during the project. In
contrast traditional process methods are not used
by any studio. This fact demonstrates that agile
development indeed is a key topic of interest
for the games industry as well as the software
industry. It has also shown that game studios
using Scrum or agile/lean techniques trend to
relying on test automation, integration servers
and scripting technologies. Although the results
indicate that game studios use flexible processes,
we assume that these processes might be executed
for games differently than for the development of
non-game software, since games are developed by
heterogeneous teams from arts and engineering

disciplines [15]. An indication for this assumption
can be found in our results that show a trend in
favoring interaction sketching tools over the usage
of object-oriented modeling tools. Further results
about tool usage show that versioning systems
are quite common, although a considerably low
number uses test automation and integration
servers. With regards to test driven development,
the games industry shows the same bad situation
described by Berner et al. [6] for software industry.
In the current situation, we estimate low staff
size and project complexity as delimiting factors
for applying automation in a wide manner, which
could also explain the low amount of production
management software usage. In conjunction with
Blow’s description of development issues [9] we also
see a potential for approaches like value-based soft-
ware engineering [8] and software product lines [13].

3. Feature creep and crunch time affliction
Survey results confirm the existence of crunch time
in the Austrian games industry and strengthen the
theory of a correlation between feature creep and
crunch time (figure 4) as described in literature
[12, 27]. The crunch time rate lies in the mid-
field, which is unexpected, considering that most
studios rely on flexible processes which should as-
sist in dealing with workload irregularities. Possi-
ble causes for this contradiction could be an inap-
propriate application of the process or/and a miss-
ing domain specific tailoring of a flexible process
to the needs of the games industry (heterogeneous
teams, product focus on non-functional require-
ments, etc.). Concerning feature creep, we think
that primary reasons could be found in poor re-
quirement elicitation and missing prototyping in
early project phases. Another particular serious
problem that we have identified is a lack of project
timeliness, as only some projects are completed
on time. For an industry that makes most of its
revenues during specific periods of the year (e.g.
Christmas), there would be no more fatal risk than
not to be able to make a title available during a cer-
tain season and would provide an explanation for
the evident occurrence of crunch time. Depending
on game type different crunch affliction rates are
apparent, with the lowest frequency of crunch time
in mobile games development and higher frequency
in the development of complex systems like virtual
worlds/MMOG.

Closer examination of our results demonstrates
that feature creep and crunch time are not prob-
lems per se, but rather symptoms of substantial
underlying workflow and integration issues. When
game developers complain about crunch time, they
indirectly question the company’s production pro-
cess. Although the first reactions on claims of ex-

9

cessive crunch time may suggest that the occur-
rence of this symptom could be primarily reduced
on irrational decisions of business executives, the
collected data supports the assumptions that a sig-
nificant proportion goes also on misconceptions in
the VGSD:

1. The statement that games are something com-
pletely different that cannot be compared with
non-game software development is not true.
Our results indicate that games are developed
with process used in traditional software de-
velopment and game developers will profit to
a certain extend also from existing software en-
gineering best-practices.

2. However, games are different in some aspects
and their way of development demands domain
specific tailoring. It is therefore not enough to
just blindly apply the same proven techniques
and best-practices from software engineering,
but to countercheck if adaptations or complete
redesign are necessary in order to serve game
developers well.

We are confident that if more developers are aware
of these two points, the developers’ quality of life as
well as the company’s productivity can be improved
concurrently and not, as it is today often the case,
at the cost of each other.

7 Conclusion & Further Work

The presented study demonstrates that empirical
and evid-ence-based software engineering can be
of great assistance in identifying similarities and
differences between the development of game and
non-game software. Our results demonstrate that
game developers rely primarily on flexible, iterative
development processes like Scrum and other agile
techniques and favor interaction-focused sketching
and user testing instead of object-oriented model-
ing tools and automated testing. With regards to
Austria it can be summarized that it is dominated
by small and young independent studios developing
small/short-scheduled projects for target platforms
with low entry costs. Concerning the industry-
specific problems of feature creep and crunch time,
it can be concluded that our results indicate that
these issues exist rather frequent, but also that they
seem to be in fact symptoms of underlying process
integration and workflow problems.
Although first results of this survey seem promising
it is clear that further investigation is required in
order to draw profound general conclusions. We see
the following research steps as needed with regards
to extending the body of knowledge in VGSD.

• Replication of this survey within the games in-
dustry of another country.

• Regular replication of this survey in Austria, as
the games industry in general is rather short-
cycled and volatile.

• Interviews with developers and studio execu-
tives with the goal of refinement and focussing
of problem areas.

• Case studies of major and independent studios
with respect to agile development processes
and the elicitation and tracing of product re-
quirements.

The question if empirical software engineering and
the video game software industry could learn from
each other can be confirmed with providing mutual
benefits for both sides.
Due to the complexities of game systems and het-
erogeneous disciplines involved, VGSD subliminally
relies on empirical approaches by means of empir-
ical process control (e.g. Scrum and variations)
and studies in order to improve product quality.
Our survey results suggest that some serious work-
flow problems could probably even be solved by
applying concepts from existing software engineer-
ing best-prac- tices (e.g. value-based software engi-
neering and software product lines). We are curious
to see how team productivity and product quality
will improve by applying games industry tailored
techniques and processes from empirical/evidence-
based research.
On the other side, empirical software en-
gineering research in the domain of video
game/entertainment software has the opportu-
nity to investigate large cross-disciplinary projects
which rely to a big extend on disciplines outside
the engineering domain (e.g. fine arts, film, prod-
uct design) as well as to examining the behavior of
existing techniques within a new industrial field.
Investigating the creative software industry with
its focus on end-user experience will also lead to
new techniques (e.g. instrumenting the concept of
game jams for new product development [25]) that
will help software developers from other domains to
be prepared for the complex projects of tomorrow
and by supporting companies in providing better
integrated solutions for their customers faster.

8 Acknowledgments

The authors would like to thank the Vienna chapter
of the International Game Developers Association,
Andrea Schmoll and all who helped reviewing the
survey questionnaire.
Thomas Wagner was a member on the initial team

10

and helped planning, designing and executing the
survey, and we thank him for his very valuable con-
tributions.

References

[1] A. Abran, P. Bourque, R. Dupuis, and J. W.
Moore. Guide to the Software Engineering
Body of Knowledge. IEEE Press, Piscataway,
NJ, USA, 2004.

[2] T. J. Allen. The passion of the developer:
ea spouse in the h ouse!: a panel on labor rela-
tions and quality of life in the industry. In Pro-
ceedings of the 2006 ACM SIGGRAPH sym-
posium on Videogames, pages 29–40, Boston,
Massachusetts, 2006. ACM.

[3] V. R. Basili, G. Caldiera, and H. D. Rom-
bach. Goal question metric paradigm. In
J. J. Marciniak, editor, Encyclopedia of Soft-
ware Engineering, volume 1, pages 528–532.
John Wiley & Sons, 1994.

[4] K. Beck. Test Driven Development: By Exam-
ple. Addison-Wesley Professional, 2002.

[5] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change. Addison-Wesley
Professional, 2nd edition, 2004.

[6] S. Berner, R. Weber, and R. K. Keller. Ob-
servations and lessons learned from automated
testing. In Proceedings of the 27th Interna-
tional Conference on Software Engineering,
pages 571–579, St. Louis, MO, USA, 2005.
ACM.

[7] S. Beydeda, M. Book, and V. Gruhn, ed-
itors. Model-Driven Software Development.
Springer, 1st edition, 2005.

[8] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus,
and P. Grünbacher, editors. Value-Based Soft-
ware Engineering. Springer, 2005.

[9] J. Blow. Game development: Harder than you
think. ACM Queue, 1(10):28–37, 2004.

[10] D. Budgen, S. Charters, M. Turner, P. Brere-
ton, B. Kitchenham, and S. Linkman. Investi-
gating the applicability of the evidence-based
paradigm to software engineering. In Proceed-
ings of the 2006 international Workshop on In-
terdisciplinary Software Engineering Research
(WISER), pages 7–14, Shanghai, China, 2006.
ACM.

[11] D. Callele, E. Neufeld, and K. Schneider. Re-
quirements engineering and the creative pro-
cess in the video game industry. In Proceed-
ings of the 13th IEEE International Confer-
ence on Requirements Engineering, pages 240–
252. IEEE Computer Society, 2005.

[12] H. Chandler. The Game Production Handbook.
Charles River Media, Boston, 1 edition, 2006.

[13] P. Clements and L. Northrop. Software Prod-
uct Lines: Practices and Patterns. Addison-
Wesley Professional, 5th edition, 2007.

[14] P. M. Duvall, S. Matyas, and A. Glover. Con-
tinuous Integration: Improving Software Qual-
ity and Reducing Risk. Addison-Wesley Pro-
fessional, 2007.

[15] J. P. Flynt and O. Salem. Software Engi-
neering for Game Developers. Game Devel-
opment Series. Thomson Course Technology
PTR, Boston, 2005.

[16] IGDA. Game Developer Demographics Re-
port. San Francisco, CA, 2005. Available at
http://archives.igda.org/diversity/report.php
(last visited 03/01/2010).

[17] A. Jedlitschka, M. Ciolkowski, and D. Pfahl.
Reporting experiments in software engineer-
ing. In F. Shull, J. Singer, and D. I. K. Sjoberg,
editors, Guide to Advanced Empirical Software
Engineering, pages 201–228. Springer London,
London, 2007.

[18] B. Kitchenham and S. L. Pfleeger. Principles
of survey research part 4: questionnaire evalu-
ation. SIGSOFT Softw. Eng. Notes, 27(3):20–
23, 2002.

[19] B. Kitchenham and S. L. Pfleeger. Principles
of survey research part 6: data analysis. SIG-
SOFT Softw. Eng. Notes, 28(2):24–27, 2003.

[20] B. A. Kitchenham, T. Dyba, and M. Jor-
gensen. Evidence-based software engineering.
In Proceedings of the 26th International Con-
ference on Software Engineering, pages 273–
281. IEEE Computer Society, 2004.

[21] B. A. Kitchenham and S. L. Pfleeger. Princi-
ples of survey research part 2: designing a sur-
vey. SIGSOFT Softw. Eng. Notes, 27(1):18–
20, 2002.

[22] B. A. Kitchenham and S. L. Pfleeger. Princi-
ples of survey research: part 3: constructing
a survey instrument. SIGSOFT Softw. Eng.
Notes, 27(2):20–24, 2002.

11

[23] B. A. Kitchenham, S. L. Pfleeger, L. M.
Pickard, P. W. Jones, D. C. Hoaglin, K. E.
Emam, and J. Rosenberg. Preliminary Guide-
lines for Empirical Research in Software En-
gineering. National Research Council Canada,
2001.

[24] P. Kruchten. The Rational Unified Pro-
cess: An Introduction. Addison-Wesley Pro-
fessional, 3 edition, 2003.

[25] J. Musil, A. Schweda, D. Winkler, and S. Biffl.
Synthesized Essence: What Game Jams Teach
About Prototyping of New Software Products.
In Proceedings of the 32nd International Con-
ference on Software Engineering, Cape Town,
South Africa, 2010. ACM. (to appear).

[26] M. Peltoniemi. Life-cycle of the games indus-
try: the specificities of creative industries. In
Proceedings of the 12th International Confer-
ence on Entertainment and Media in the Ubiq-
uitous Era, pages 54–58, Tampere, Finland,
2008. ACM.

[27] F. Petrillo, M. Pimenta, F. Trindade, and
C. Dietrich. What went wrong? A survey of
problems in game development. Comput. En-
tertain., 7(1):1–22, 2009.

[28] K. Schwaber. Agile Project Management With
Scrum. Microsoft Press, Redmond, WA, USA,
2004.

[29] I. Sommerville. Software Engineering. Addi-
son Wesley, 8 edition, 2006.

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohls-
son, B. Regnell, and A. Wesslén. Experimenta-
tion in software engineering: an introduction.
Kluwer Academic Publishers, 2000.

12

