

An Empirical Study of Scenarios Gained and Lost
in Architecture Evaluation Meetings

Dietmar Winkler
Vienna University of Technology

Favoritenstr. 9/188
A-1040, Vienna, Austria

+43 1 58801 18801

Dietmar.Winkler@tuwien.ac.at

Stefan Biffl
Vienna University of Technology

Favoritenstr. 9/188
A-1040, Vienna, Austria

+43 1 58801 18810

Stefan.Biffl@tuwien.ac.at

Muhammad Ali Babar
Lero, University of Limerick

Castletroy
Limerick, Ireland
+353 61 233639

malibaba@lero.ie

ABSTRACT

An important element in scenario-based architecture evaluation

is the development of scenarios by holding meetings of stake-

holders. As the team meeting is an expensive activity, studying

the effectiveness of meetings is an important research question.

In this paper, we report the findings from analyzing the data

collected in a controlled experiment aimed at empirically study-

ing the effectiveness of scenario development meetings in terms

of gained and lost scenarios. A secondary researched issue was

whether or not a top-down technique for eliciting scenarios can

improve the performance of a team meeting compared to a bot-

tom-up technique. Findings from data analysis question the ef-

fectiveness of holding meetings for developing scenarios since

more important scenarios were lost than gained in these meet-

ings. Data results also provide empirical support to our assertion

that top-down scenario development technique is better than the

bottom-up technique.

Categories and Subject Descriptors

K.6.3 [Software Engineering]: Software Management – Soft-

ware process.

General Terms

Measurement, Management, Experimentation.

Keywords

Architecture evaluation, quality attributes, scenarios.

1. INTRODUCTION
Software architecture (SA) plays a vital role in achieving desired

quality attributes (such as performance, security, and modifiabil-

ity) in a system. That is why practitioners and researchers have

been emphasizing the importance of addressing quality-related

issues at the architecture level. The idea of predicting the quality

of a software-intensive system from a high-level design descrip-

tion originated in Parnas’s work on software modularization

 [33] and has recently emerged as an important quality assurance

(QA) technique known as software architecture evaluation.

There is a range of scenario-based architecture evaluation meth-

ods such as Architecture Trade-offs Analysis Method (ATAM)

 [23], Architecture Level Modifiability Analysis (ALMA) [27],

and Performance Assessment of Software Architecture (PASA)

 [37]. The effectiveness of these approaches heavily depends on

the ability of stakeholders to identify high-quality scenarios, as

these scenarios are a key input to the evaluation process

 [9] [25].There are several scenario-generation approaches such

as brainstorming workshops [4], interviews [27], and use case

analysis [37].

In the architecture evaluation process there are two steps to

gather and refine scenarios (similar to the Fagan inspection

process [16] [17], another QA technique): 1. individual scenario

generation and 2. discussion of individual scenarios in a team

meeting to improve the quality (and possibly the quantity) of

scenarios for architecture evaluation.

Recent research in the software inspection area has focused

mainly on improving the effectiveness and efficiency of individ-

ual defect detection through improved defect detection tech-

niques [6] [13] [14] and on assessing and optimizing inspection

gains in team meetings [12]. An important challenge of applying

inspections in industry is the large variation in inspectors’ per-

formance and the associated risk of ineffective but costly inspec-

tion meetings. While effectiveness of inspection team meetings

has been a topic of significant research over the years, the effec-

tiveness of team meetings on the quality of scenario profiles has

not yet been empirically investigated in software architecture

research. A secondary research issue is whether or not a struc-

tured technique (i.e., top-down) for eliciting scenario profiles

can improve the performance of a team meeting compared to an

unguided scenario elicitation technique (i.e., bottom-up).

This paper presents the results of analyzing the quantitative data

gathered in a controlled experiment [1] for gaining a better un-

derstanding on the effectiveness of team meetings for develop-

ing quality attributes scenarios in the software architecture

evaluation process and the impact of using two techniques (top-

down and bottom-up) on the performance of a team based on the

quality of scenarios that are developed to characterize quality

attributes required by a system.

The paper is structured as following. Section 2 provides a brief

overview on related work. Section 3 introduces the research

questions and hypotheses. Section 4 summarizes main aspects of

the experiment performed to gather the empirical data. Section 5

presents results followed by discussion on the results in Section

6. Section 7 concludes the paper.

2. BACKGROUND and MOTIVATION
This section summarizes relevant research from the areas of

software architecture evaluation and software inspection.

2.1 Architecture evaluation

Software quality attributes of a software system such as per-

formance, security, or changeability can be supported or inhib-

ited by the software architecture of a software-intensive system

 [7]. Thus the evaluation of software architecture at an early stage

has gained significant interest. Scenarios provide context for

evaluating architecture to work with concrete examples enabling

the user to understand their detailed effect [28]. Scenarios also

help draw conclusions on the adequacy of a proposed architec-

ture and available alternatives. Thus many mature software ar-

chitecture evaluation methods are scenario based [3] [22]. A set

of scenarios is called a scenario profile.

The software architecture community has developed many

frameworks for eliciting, structuring, and classifying scenarios.

For example, Lassing et. al. [29] proposed a two-dimensional

framework for eliciting scenarios, Kazman et. al. [25] proposed

a generic 3-dimensional matrix to elicit and document scenarios.

Bass et al. [7] provided a six-element framework to refine and

structure scenarios. Scenarios used in software architecture

evaluation are classified into various categories such as: direct

scenarios, indirect scenarios, complex scenarios, use case sce-

narios, growth scenarios, and exploratory scenarios

 [7] [24] [29] [31]. The Software Engineering Institute (SEI) has

enumerated a collection of general quality-attribute scenarios

that are intended to help characterize most commonly known

quality attributes [8] such as performance, modifiability, and

usability. A general scenario is, in effect, a template for generat-

ing a specific quality-attribute scenario. For example, two (ab-

breviated) modifiability general scenarios are:

• “Changes to the platform occur” and;

• “System needs to serve requests arrived from users.”

Since not all general scenarios for a particular quality attribute

may be relevant to a particular system or class of systems, an

evaluator must identify relevant scenarios that should be made

system specific [30]. We believe that general scenarios also help

instigate thinking for system-specific scenarios called concrete

scenarios [1]. However, general scenarios can also be classified

according to domain-specific software change categories to help

an evaluator to develop those general scenarios that may be

more relevant and should be made system specific with the help

of stakeholders for a particular system.

Despite the well recognized importance of having good quality

scenarios and significant cost of having meetings for developing

good quality scenarios, with one exception [9], there has been

little research on determining the most effective way of gather-

ing quality scenarios from stakeholders. Based on a controlled

experiment, Bengsston and Bosch [9] concluded that prepared

teams performed better than unprepared teams and individuals in

terms of quality of the scenario profiles developed. However,

there has been no research on understanding the scenarios gains

and lost during meetings. Considering the importance of scenar-

ios in architecture evaluation, and cost, logistics, and scheduling

difficulties involved in arranging evaluation meetings, we be-

lieve that it is an important research issue. Hence, the research

reported in this paper is motivated by the practical need to em-

pirically determine an effective approach to guide the scenario

development process on individual and team levels in order to

gather high quality scenarios for architecture evaluation in a cost

effective manner.

2.2 Software inspection team meetings

Similar to the architecture evaluation, software inspection also

aims at assessing the quality of artifacts in the software devel-

opment process. Some software inspection approaches also use

scenarios to support finding quality issues [21]. While the re-

sults of the software inspection process are defect reports, the

architecture evaluation process steps we investigate result in a

list of evaluation scenarios. The general process seems suffi-

ciently similar to consider taking experiences from software

inspection to generate hypotheses for studying different aspects

of the architecture evaluation process.

Initially, Fagan’s software inspection [16] viewed the inspection

team meeting as the key process step, while more recent ap-

proaches starting with Parnas and Weiss [32] focused more on

individual inspection work to lower inspection effort as the team

meeting is much more expensive than individual work. During

individual work, inspectors can work in parallel and from differ-

ent points of views, while in the team meeting only a limited

number (usually two) of the inspectors can effectively interact at

the same time while the others are just listening. Empirical re-

sults on software inspection meetings’ effectiveness differ con-

siderably. Fagan reported inspection meetings to be very effec-

tive [17] [16], while more recent studies reported contradictory

results [19] [34] [35] [36].

Software inspection reports identify several potential benefits of

meetings: 1. Synergy: The synergy effect assumes that meeting

dynamics help find new defects. However, Votta [36] reports

individuals already recorded 9 out of 10 defects that came out of

the team meeting and thus only very little synergy can be

achieved. Bianchi et al. [11] report that meeting losses (i.e., real

defects found during individual preparation but then dismissed

in the meeting as irrelevant or false positives) significantly out-

weigh meeting gains (i.e., defects newly found during the team

meeting). Especially defects reported by only one inspector dur-

ing individual work were lost. Johnson and Tjahjono [19] [20]

observed a substantial degree of synergy (30% to 40% of new

defects detected). 2. Identification of False Positives: Land et al.

 [26] report that team meetings have a clear advantage over indi-

vidual defect detection in discriminating between true defects

and false positives. False positives are defect reports, which

actually are not true defects. False positives can become a prob-

lem if they occur frequently because they incur costs, e.g., time

spent on trying to diagnose and repair false positives. 3. Soft

Benefits are meeting benefits apart from synergy and false posi-

tive reduction, including the sharing of review experiences, the

dissemination of product-related knowledge and the creation of

collective ownership for the review outcome among reviewers

 [19] [20].

However, in the inspection area the reduction of false positives

and the soft benefits seem not to justify the meeting costs. Simi-

lar to the concept of False positives, software architecture

evaluation has a concept called irrelevant scenarios, those

which are considered not relevant to the system whose architec-

ture is being evaluated or scenarios which are not expected to be

materialized in a given duration, e.g., 3 to 5 years. Before

evaluating an architecture, irrelevant scenarios are identified and

excluded from the evaluation. The identification of irrelevant

scenarios may be based on prioritization or experience of

evaluators and/or stakeholders. Thus the research reported in

this paper focuses on the evaluation of the synergy effect of the

team meeting in software architecture evaluation, i.e., relevant

architecture evaluation scenarios gained or lost in team meeting.

3. RESEARCH HYPOTHESES
The context for this experiment is a scenario development work-

shop (such as Quality Attribute Workshop (QAW) [4]) where

stakeholders develop scenarios to precisely specify quality at-

tributes (such as performance, reliability and security). These

scenarios are used to assess the capability of a proposed archi-

tecture options with regards to the desired quality attributes

characterized by these scenarios [7].

Like [9], we use a two-stage process of developing scenarios.

First, each individual constructs a scenario profile alone. A pro-

file is a set of scenarios. Second, individuals come together in

teams to construct a joint scenario profile. We have mentioned

that domain-specific software change categories can help stake-

holders to develop those scenarios that may be more relevant. It

is considered that the provision of software change categories

can have most impact on the first stage of the scenario develop-

ment process. Scenarios produced by individuals who are given

the software change categories should include a larger propor-

tion of the most relevant changes than scenarios produced by

individuals who are not given the software change categories

 [1]. However, we believe that the provision of the software

change categories can also help groups of stakeholders to per-

form better in scenario development meetings.

For empirical evaluation, we investigate the performance of

individuals and teams to find scenarios in 3 categories: very

important scenarios, important scenarios, and less important

scenarios. The scenarios are assigned to one of the three catego-

ries (i.e., A, B, and C) based on the score assigned to each of the

scenarios. The score of a scenario is assigned based on the num-

ber of times that scenario is reported by individuals and real

teams (see Section 4.3.3 for details). The individuals use either a

structured approach to find scenarios guided by so-called change

categories (the treatment group) or and ad hoc approach (the

control group). Performance can be measured on individual or

on team level; there are real teams, which conduct a team meet-

ing, and nominal teams, which do not meet; thus the scenario

lists of nominal teams can be directly derived from the individ-

ual scenario lists of the team members. We propose the follow-

ing null hypotheses for the reported research:

H01: Individuals in the treatment group develop similar number

of scenarios for each of the categories as individuals in the con-

trol group.

H02: In the scenario development team meeting participants find

no more new scenarios than they loose compared to individual

work.

H03: Teams who are given the software change categories for

use in scenario elicitation perform similar to teams who are not

given the software change categories.

The alternative hypotheses for this research are:

H11 Individual guidance effects: Individuals in the treatment

group find more scenarios than individuals in the control group.

There are many reports in software inspection that support the

effectiveness of so-called reading techniques, which support the

inspector with specific guidance in identifying defects, e.g.,

checklists or scenario-based reading [6] [11] [17] [19]. We expect

the guided approach (i.e., provision of the software change cate-

gories) to enable individuals to find more scenarios in general

and more important scenarios in particular as the change catego-

ries should ensure that a participant is unlikely to overlook an

important category of quality attribute required of architecture.

H12 Team effects: In the architecture evaluation team meeting

participants find more new evaluation scenarios than they loose

compared to individual work. With this research, we follow the

analysis procedure proposed by Bianchi et al. [11]. However,

we apply the approach to architecture evaluation and extend

their analysis by assessing the influence of different scenario

generation techniques on the results. As scenario generation is

more concerned with providing more scenarios than with the

elimination of false positives, which is an important aspect in

software inspection. We expect architecture evaluation teams to

use only little time to discard scenarios but concentrate on add-

ing new scenarios, which should yield considerably more if not

more important scenarios compared to the individual inputs to

the team meeting.

H13 Team guidance effects: Teams who use a guided method

for scenario elicitation perform better than teams who use a non-

guided method. Similar to the individual guidance effects we

expect teams who use a structured approach to focus on eliciting

more important scenarios in the given change categories.

4. EXPERIMENT DESCRIPTION
This section provides an overview on the experiment design,

conduct, and threats to validity.

4.1 Experimental Design and Variables

The experiment design was a randomized balanced design,

which used the same experimental materials for both treatments

and assigned the subjects randomly to each treatment [38]. Both

the assignment of individuals to treatment groups and to work-

ing teams was randomized using a sort card method of randomi-

zation. There were 12 participants in each the treatment groups,

and 4 teams of 3 persons each in the team part of the experi-

ment. Individuals in the scenario development process apply

system requirements (functional and non-functional), process

instruction, and supporting material, e.g., guidelines for scenario

elicitation, questionnaires for background information and skill

collection. Output is a list of scenarios characterizing a required

quality attribute (i.e., modifiability in this study).

Team development of scenarios: inputs are the scenarios devel-

oped by individual team members; output is a list of scenarios

developed by a team. The team scenarios are developed in a

team meeting in which the team scenarios are based on the sce-

narios developed by each member of a team during the first

phase and based on the team brainstorming, interaction, and

discussion.

Independent variable of this study is a list of domain specific

categories of software changes provided to the participants dur-

ing scenario development activity, with one treatment: change

categories provided, and one control: change categories not

provided (represented by the treatment and control groups).

The dependent variable is the frequency of each scenario devel-

oped by the participants a) individually, b) in real 3-person

teams, and c) in nominal 3-person teams.

• Individual performance: number of scenarios reported

in each of the three scenario categories (A, B, C).

• Real team performance: number of scenarios reported

in each of the three scenario categories by a team of 3

individuals, who conducted a team meeting to discuss

their scenarios and converged to a common team list.

From discussion new ideas for scenarios may emerge

and false positives in the individual lists may be

eliminated by team consensus.

• Nominal team performance: number of scenarios re-

ported in each of the three categories by a team of 3

individuals, who form a non-communicating team, i.e.,

there is no team meeting but an editor combines the

individual scenarios into a team scenario profile (no

synergy and no removal of false positives).

Each scenario has been assigned one of the three scenario cate-

gories (A, B, and C) based on that scenario’s score, which is the

number of times that scenario is identified in all scenario pro-

files (individuals as well as teams). A category of scenario repre-

sents its relative importance in this study (see Section 4.3.3 for

further details). It is also worth mentioning that we consider the

number of scenarios mentioned by an individual or team in each

of three categories but the performance comparison is mainly

based on the number of scenarios in the most important category

of scenarios called category A.

We have mentioned that this research is mainly interested in two

things. Firstly, we want to evaluate the effectiveness of scenario

development meetings in terms of lost and gained scenarios.

Secondly, we want to learn more about the scenarios, which are

actually lost during meetings.

As far as the scenario development meeting effectiveness is

concerned, we analyze the number of scenarios gained and lost

during a meeting. A gained scenario is a scenario newly intro-

duced during the meeting (not included in an individual scenario

profiles of the team members). A lost scenario is a scenario that

was found during the individual preparation phase but was not

included in the team scenario profile. We assume that this sce-

nario was not accepted by the team during the meeting (not

found on the team scenario list). For this analysis, we compare

the performance of nominal and real teams. The performance of

a nominal team is based on the performance of all team mem-

bers during individual preparation. Its effectiveness depends on

the scenario identification performance of each individual of an

evaluation team during individual preparation and the scenario

overlap among team members. The performance of a real team

on the other hand is evaluated after the scenario development

meeting where all individually developed scenarios are dis-

cussed and a team scenario profile is developed. The group sce-

narios are developed in a meeting following a simplified process

of developing scenarios like QAW [4]. Each member of the

group presents his/her individual scenarios for group discussion

about the inclusion or exclusion of each scenario in the group

scenario profile. The group members also brainstorm new sce-

narios to characterize the quality attributes.

4.2 Experimental Context and Subjects

The 24 participants in the study were recruited from a software

architecture course offered at the University of New South

Wales, Australia. The experiment was part of a scenario devel-

opment workshop, which was one of the assessment tasks in that

course [1]. The students were briefed about the objective and

procedure of the study. They had the option of withholding their

results from research. Written permission was sought from the

participants to use their data in this study.

Most of the students were post-graduate students with the excep-

tion of 3 fourth-year undergraduate students, who had main-

tained average marks at 75% or better (a requirement to enroll in

this course for undergraduates). The ratio of male and female

was representative of the traditional software engineering

courses and industry with only 5 female students. All of the

participants were either working or had worked as information

technology (IT) professionals with an average working experi-

ence of 4.5 years in the IT industry and were of an average age

of 27 years. Their working experience typically had a good mix

of design, coding, test, maintenance, and technical support ac-

tivities.

4.3 Experimental material

Two lectures (2 hours each) were dedicated to topics directly

related to the experimental study, i.e., quality attributes, software

architecture evaluation, and approaches to brainstorm and struc-

ture general and concrete scenarios in order to characterize qual-

ity attributes. During the course, there was also one class exer-

cise to brainstorm and structure scenarios for a system the stu-

dents were familiar with.

One week before the study, all the participants received detailed

information about the system, LiveNet, for which they were sup-

posed to develop software change scenarios. One of the authors

has used LiveNet to create a network of workspaces designed to

support various activities of the software architecture evaluation

process such as architecture presentation, scenarios development

and impact analysis. Each workspace had roles, artifacts and

different collaborative features. The participants were assigned

different roles (such as software architect, software engineer,

and maintainers) in a few workspaces and asked to interact with

various features of the system. A short document describing

various features of LiveNet was also provided a week before the

study.

Before the study all the participants attended a 30 minutes re-

fresher session covering the concepts of constructing change

scenarios for architecture evaluation, quality attributes, general

and concrete scenarios. However, our study did not require the

participants to have any experience in architecture evaluation.

The duration and format of our training was designed to make

the participants representative of most stakeholders involved in

real-world architecture evaluation, where stakeholders normally

receive minimum training in creating scenarios.

4.3.1 Software requirements specifications
This study used the Software Requirement Specification (SRS)

for a web-based collaborative, LiveNet [15]. LiveNet provides a

generic workflow engine and features to support collaboration

among geographically distributed members of a team, e.g., syn-

chronous chat, discussion forum, document repository, notifica-

tion, roles, planning tools, and task assignment tool. LiveNet

enables users to create workspaces and define elements of a

particular workspace. LiveNet also supports emergent business

processes. We prepared a simplified version of an SRS and a

description of the system to provide the participants with as

clear a picture of the system as possible.

4.3.2 Software Change Categories Used
We have mentioned that a classification of software change

categories can be used as a guide to help stakeholders to come

up with better quality scenarios [1]. A scenario classification

scheme can be derived from the application domain, knowledge

of potentially complex scenarios, or some other source of engi-

neering knowledge. In order to derive the categories of changes

used in our research, we draw upon in-depth knowledge of the

collaborative-applications domain and the types of complex

changes made overtime in LiveNet. We followed an iterative

process of building the classification scheme. Based on more

than five years experience with LiveNet as researchers and us-

ers, we came up with a list of major categories of changes most

likely required in a web-based groupware like LiveNet. Then

that list was reviewed by the chief research investigator and

software architect of LiveNet, both of whom were involved with

the project throughout its life. Based on their feedback, the list

of change categories was refined. Following is a brief descrip-

tion of each of these categories:

• User Interface (UI) – Changes in the User Interface of appli-

cation.

• Security Policy (SP) – Changes needed for increased secu-

rity of application and content.

• Performance and Scalability (PS) – Changes required for

increased performance or handling more users without de-

creasing performance.

• Workflow Management (WM) – Changes to provide various

features to support different business processes.

• Content Management (CM) – Changes needed to im-

prove/add content management features.

4.3.3 Scheme for Marking Scenario Profiles
In order to assess and compare the performance of the individu-

als in the control and experimental groups, and real and nominal

teams, we needed a suitable marking scheme. Our previous stud-

ies [2] [1] in this line of research have used a marking scheme

that ranks scenario profiles by comparing them with a reference

scenario profile [9]. However, for this study, we decided to

come up with another marking scheme, which is based on score

for each scenario that reflects the frequency of occurrence of that

particular scenario in all scenario profiles (i.e., individual and

groups). That means the score of an individual scenario is based

on the frequency of that scenario being reported by individuals

and real teams. This marking scheme assumes that a higher

number of occurrences indicates a higher importance of a sce-

nario.

By using this marking scheme, we identified the importance of

each scenario by counting the occurrences of each scenario in all

individual and teams scenarios profiles (32 total, 24 individual

and 8 team profiles). The score given to each scenario was used

to classify that particular scenario in one of the three scenario

categories, which reflect the relative importance of a scenario.

The overall score was calculated by summarizing the individual

and real team scores (frequency of a scenario found). The top

20% of scenarios based on a descending order of all scenarios’

frequencies are considered as "most important" (class A) with

scenarios’ score > 30. After the top 20%, another 40% are con-

sidered as important (class B) with scenarios’ score between 4

and 30, and the last 40% are considered less important (class C)

with scenarios’ score < 4. Here score means the frequency of

occurrence of each scenario.

According to this method, the actual scenario profile for each

individual and team must be re-coded into a standard format for

analysis. This approach to assigning scenarios to different cate-

gories is based on the assumption that the importance of a sce-

nario can be determined by the number of scenario profiles in

which that particular scenario appears. The appearance of a sce-

nario in a scenario profile shows that the creator of that profile

considered that scenario to be relevant. Hence, the more partici-

pants mention a particular scenario, the more relevant it be-

comes. That means the most relevant scenario will have the

highest frequency of occurrence in all the scenario profiles cre-

ated by individuals and real teams.

4.4 Experiment Execution

The experiment was conducted as a part of scenario develop-

ment workshop for the course as mentioned in section 3.2. Prior

to the experiment, the number of teams were identified based on

the expected number of the participants (3 members each team).

Each team was assigned a name and three participants were

assigned to each team. Each team was allocated to one of the

two experimental conditions (treatment and control). The par-

ticipants to the teams and the teams to the experimental condi-

tions were assigned randomly using card sort randomization.

All the 24 participants arrived according to the schedule. There

was a 30 minute briefing session to revise the lecture material on

software architecture evaluation process, generating quality

sensitive scenarios, and LiveNet system. Participants were given

a document describing the collaborative application, architecture

evaluation process and example scenarios.

Figure 1: Two-step process of developing a scenario profile.

After the briefing session, the participants were given a simpli-

fied version of requirements for LiveNet. The participants in the

treatment group also received a document describing the five

categories of most commonly occurring changes in a collabora-

tive application like LiveNet. They were encouraged to use the

categories to stimulate their thinking about the types of changes

that may be expected to occur over the coming three years dur-

ing scenario development exercise. The participants followed

the two phase process of developing individual and team scenar-

ios shown in Figure 1. The second step is performed in a meet-

ing session, which is held face-to-face.

The participants were asked to develop software change scenar-

ios individually for 35 minutes. When 35 minutes of time had

passed the profile of individuals were collected, photocopied

and returned to them. All the participants were asked to join

their respective teams to develop team scenarios for 40 minutes.

Once 40 minutes of time had elapsed, the team scenario profiles

were collected. After developing individual and team scenario

profiles, there was a debriefing session during which the partici-

pants also filled a post-session questionnaire. However, the

analysis of the data collected through the questionnaire is not

within the scope of this paper.

4.5 Validity considerations

Every empirical study has to deal with several threats to internal

and external validity. In the following sub-sections, we discuss

the major threats to this study and the countermeasures we ap-

plied.

4.5.1 Threats to internal validity
Internal validity is the degree to which the values of dependent

variables can only be attributed to the experimental variables.

 [38]. In order to avoid bias in allocating participants to the treat-

ment groups, we randomized the assignment by using a sort card

method. We wrote the names of the participants and groups on

plain cards. After shuffling the cards, we assigned one card to

each group (treatment and control) without seeing the individ-

ual’s or group’s name on the card.

Another threat to the internal validity of our experiment is the

appropriateness of the approach to classifying into three catego-

ries as an indication of their respective importance based on the

frequency of occurrence of each scenario. This approach is simi-

lar to the method of measuring the quality of scenarios profiles

developed for architecture evaluation and has been used in sev-

eral studies [9] including ours. Moreover, we argue that decid-

ing about the relative importance of each scenario based on its

frequency is similar to the common approach to prioritizing

quality attribute scenarios based on stakeholders’ votes [4].

Another potential threat associated with this approach is the

skill, knowledge, and bias of the person, who recodes each sce-

nario, removes duplication, and assesses them semantic equiva-

lence in each scenario profile before counting their occurrences.

We addressed this issue by having two researchers perform these

tasks independently Any disagreement regarding occurrences of

each scenario in all profiles was resolved before counting its

occurrences.

4.5.2 Threats to external validity
External validity is the degree to which the results can be gener-

alized, i.e. transferable to other similar situations. In particular,

it is important to consider whether the participants are represen-

tative of the stakeholders who would undertake architecture

evaluation in the industry, and whether the experimental materi-

als and process are representatives of the process and materials

used in industrial architecture evaluations.

In an industrial evaluation, stakeholders may have a variety of

different backgrounds (such as software engineering, marketing,

management and sales). This was not the case in our experiment.

All the participants had educational and professional back-

grounds in either computer science or software engineering.

This means that our results are more likely to generalize to

stakeholders with a technical background than stakeholders with

a non-technical background.

Secondly, stakeholders in an industrial situation are more likely

to have considerable experience of the application being evalu-

ated, whereas the participants in our experiment only had limited

knowledge of LiveNet. That means our results are most likely to

apply to stakeholders with not very extensive experience of ap-

plication being evaluated.

The participants had limited experience of software architecture

evaluation and of developing scenarios for quality attributes. As

far as we are aware, organizations normally do not provide ex-

tensive training to their employees for software architecture

evaluation or developing quality-sensitive scenarios. Thus, the

experience of the experimental participants is likely to be similar

to that of stakeholders performing an industrial evaluation

The software requirements specifications used in the experiment

is relatively short and simple compared with a typical industrial

one. However, in industry stakeholders would be given both

more requirements and a more time to develop their scenarios.

Finally, there may be a threat to the external validity if the sce-

nario development process used in our study is not representa-

tive of the industrial practices for developing scenario profiles

for software architecture evaluation. However, the scenario de-

velopment process in our experiments was similar to the one

used for most of the scenario-based software architecture evalua-

tion methods, which gather scenarios to characterize quality

requirements to be fulfilled by a proposed software architecture

through brainstorming workshops like QAW [4].

5. RESULTS

5.1 Data analysis procedure
The data analysis takes as inputs the scenarios developed during

the experiment by individuals and real teams. Based on the indi-

vidual and team scenario lists, we calculated the frequency of

each reported scenario by individual and real teams. The fre-

quency of each reported scenario is the baseline for placing that

particular scenario into a category, which represents its impor-

tance. As preparation for statistical evaluation, the scenario de-

scriptions were matched and divided into 3 scenario categories:

(“A”, “B”, and “C”) (see Section 4.3.3 for details about the

marking scheme).

Performance in the 3 scenario categories was measured from

individuals, real 3-person teams, and nominal 3-person teams

with respect to the scenario classes (A, B, C). We identified the

number of scenarios based on the individual/team scenario list

for individuals and real teams. Regarding nominal (i.e., non-

communicating) teams, we determined the team scenario list by

combining the individual lists of a team (a scenario must be

identified by at least one team member).

For statistical analysis, we apply descriptive statistics, i.e. mean,

standard deviation, and box plots to visualize the results. Fur-

thermore, we also apply the non parametric Mann-Whitney-test

at a significance level of 95% to test our hypotheses.

We gathered 104 unique scenarios from 32 scenario profiles,

i.e., a set of scenarios, (24 individual scenario profiles and 8

team scenario profiles). Using the above-mentioned classifica-

tion scheme, we classified all the scenarios into relevant catego-

ries. Table 1 presents an overview of the scenarios classified in

each of the three categories.

Table 1: Scenario Classification.

Class A Class B Class C Total

No. % No. %. No. % No. %

22 21% 41 39% 41 39% 104 100%

5.2 Scenarios found by Individuals
Individuals reported on average around 9 scenarios; participants

in the treatment group more than 10 scenarios and participants

in the control group 8 scenarios [1]. Applying the Mann-

Whitney test, we observed a significant difference in the control

and treatment groups’ members (p-value: 0.037). Table 2 sum-

marizes the results of individual participants placed in the con-

trol and treatment groups.

Table 2: Number of scenarios reported by individuals.

Control Group Treatment Group Scenario

category Mean SD Mean SD

Class A 4.3 2.10 6.8 2.29

Class B 3.0 1.95 3.5 2.02

Class C 0.7 0.99 0.4 0.90

1212 1212 1212N =

Individual Reviewers

Treatment GroupControl Group

N
u
m

b
e
r
o
f
S
c
e
n
a
ri
o
s
 F

o
u
n
d
 (
In

d
iv
id

u
a
ls
)

10

8

6

4

2

0

Class A

Class B

Class C

Figure 2: Number of scenarios in each category

reported by individuals.

Figure 2 compares the number of scenarios found in the 3 sce-

nario categories for the treatment and control groups. Partici-

pants in the treatment group found overall more scenarios than

participants in the control group. Particularly in the most impor-

tant category A scenarios, the treatment group participants re-

ported significantly more scenarios (p=0.015). We do not ob-

serve any significant differences for class B (important) and

class C (less important scenarios).

5.3 Scenarios found by real 3-person teams
Teams of 3 persons reported after their meeting on average

around 15 scenarios, about 90% more scenarios than an average

individual. Guidance for the treatment group resulted on average

in notably more class A scenarios, but less class B and class C

scenarios than the control group. The treatment group shows for

class A scenarios less variance, possibly due to better guidance

provided through the change categories during the scenarios

development process. Table 3 provides a deeper insight into the

results of real teams regarding control/treatment groups and

different scenario categories.

Table 3: Number of Scenarios found by Real Teams.

Control Group Treatment Group

Mean SD Mean SD

Class A 5.8 4.79 9.8 1.26

Class B 6.8 3.10 5.3 2.87

Class C 2.8 4.27 1.5 1.29

5.4 Scenarios found by nominal 3-person

teams
Nominal teams of 3 persons reported on average 21 scenarios,

around 140% more scenarios than an average individual.

Table 4: Number of Scenarios found by Nominal Teams.

Control Group Treatment Group

Mean SD Mean SD

Class A 10.0 3.37 13.5 2.65

Class B 8.8 3.78 8.5 3.00

Class C 2.0 2.71 1.3 1.89

44 44 44N =

Nominal Teams

Treatment GroupControl Group

N
u
m

b
e
r
o
f
S
c
e
n
a
ri
o
s
 F

o
u
n
d
 (
N

o
m

in
a
l
T

e
a
m

) 20

18

16

14

12

10

8

6

4

2

0

Class A

Class B

Class C

Figure 3: Number of scenarios reported by nominal teams.

The treatment group found on average notably more class A

scenarios, but less class B and class C scenarios than the control

group (similar finding as with the real teams). Table 4 summa-

rizes the number of scenarios of nominal teams for the control

and treatment group regarding scenario categories. Figure 3

presents a box-plot according to the number of identified scenar-

ios by nominal teams (i.e., a scenario was found by at least one

team member) regarding scenario classes and groups.

Note that the number of identified scenarios is higher for all

important (i.e., class A and B scenarios) for the nominal teams

than for the real teams. Regarding class C, i.e. less important

scenarios, we could observe advantages for the real team.

5.5 Comparison of nominal and real team

performance
Real 3-person teams reported on average around 15 scenarios,

while nominal 3-person teams reported on average 22 scenarios,

which is a very interesting finding as nominal teams appear to be

more effective than the real teams in terms of the number of

scenarios reported. It is also an indication of meeting loss which

occurs as a result of some individual scenarios not being able to

make their way to the group scenarios. Thus a real 3-person

team reported 70% more scenarios than an individual, while

taking about 100% more time than the time the individuals took.

A nominal team reported 135% more scenarios than an individ-

ual with the same amount of time because three members of the

nominal team worked concurrently.

While real teams reported a comparable number of class C sce-

narios, a considerable number of important and a significant

(p=0.03) number of very important scenarios was lost in the

meeting step, on average 2.6 class B scenarios and 3 class A

scenarios. Figure 4 presents the number of identified scenarios

by real teams and nominal teams and table 5a summarizes mean

and standard deviation for this evaluation.

Table 5a: Number of Scenarios found by teams.

Real Team Nominal Team Scenario

category Mean SD Mean SD

Class A 7.8 3.88 11.8 3.37

Class B 6.0 2.88 8.6 3.16

Class C 2.1 3.00 1.6 2.20

88 88 88N =

Nominal TeamReal Team

N
u
m

b
e
r
o
f
S
c
e
n
a
ri
o
s
 F

o
u
n
d
 (
T
e
a
m

)

20

18

16

14

12

10

8

6

4

2

0

Class A

Class B

Class C

Figure 4: Number of scenarios in each category

reported by real and nominal teams.

Meeting gain and loss is a quite interesting question because a

team meeting might be helpful to elicit additional scenarios

(positive team effect) or may hinder scenario elicitation (nega-

tive team effect). Thus, we compared the real team results and

the results of a nominal team. Within a nominal team, a scenario

has been identified if at least one team member noted the sce-

nario in his/her record, without performing a team meeting. Ta-

ble 5b presents the results of the gained and lost scenarios re-

garding scenario categories.

Table 5b: Scenario gain and loss by scenario class.

Gain Loss

Mean SD Mean SD

Class A 3.0 2.14 7.0 2.73

Class B 4.4 2.51 7.0 2.73

Class C 2.1 3.00 1.6 2.20

A closer look at scenarios gained and lost in the team meeting

step reveals: Only for the least important class of scenarios on

average more scenarios were reported than lost. For important

and very important scenarios on average 3 to 4 more scenarios

were lost than gained. These results seriously question the effec-

tiveness of team meetings as conducted in the experiment.

6. Discussion

Our research in the area of software architecture evaluation aims

to reduce the time, resources and skills required to effectively

and efficiently evaluate proposed architectures. Our assertion is

that one way of achieving this goal is to improve the scenarios

development activity of the software architecture evaluation

process. This assertion is based on several reasons. Developing

scenarios is considered to be the most expensive and time con-

suming activity of architecture evaluation. The accuracy of the

results of evaluation exercise is largely dependent on the quality

of the scenarios used in the evaluation [9] [25].

Scenarios are usually developed in group meetings. As the group

meeting is an expensive undertaking, an important question is

whether the meeting is worthwhile. Empirical studies on soft-

ware inspection meetings have provided mixed results. This

paper reports an empirical research aimed at studying the effec-

tiveness of group meetings for developing scenarios based on

scenarios gained and lost. Moreover, this study also further in-

vestigate our premise that a top-down (provision of domain-

specific scenario categories) technique for developing scenarios

is better than a bottom-up (brainstorming without any support

material) technique.

This paper presents the results of data analysis to assess the ef-

fects of team meetings based on scenarios gained and lost and

effects of the provision of software change categories to be used

for guiding the scenario development process on the perform-

ance of individuals and groups working in real as well as nomi-

nal teams. Based on our experiences in conducting scenarios

development workshops and empirical findings from knowledge

acquisition and decision making disciplines, we assumed:

H11 Individual guidance effects: a) Individuals in the treat-

ment group reported significantly more scenarios in general.

Summarizing all scenario classes we observed significant differ-

ences (p-value: 0.037) of treatment and control group at a sig-

nificance level of 95% (Mann-Whitney Test).

H11b) Individuals in the treatment group report more important

scenarios in particular as the change categories should ensure

that a participant is unlikely to overlook an important architec-

ture quality category.

Data from the experiment supports that individuals from the

treatment group reported significantly more class A scenarios

(p=0.015).

H12 Meeting effect on group performance: In the software

architecture evaluation team meeting for developing scenarios,

participants find more new scenarios than they loose compared

to individual work. Analysis of the data from this study reveals

that 3-person teams reported only 50% to 150% more scenarios

than an individual working alone. Moreover, the real teams re-

ported (around 30%) less class A and class B scenarios than

nominal teams. However, the meeting loss is independent of the

provision with software change categories to guide the scenarios

development process.

This hypothesis was not confirmed through the data analysis as

team meetings lost on average more scenarios than were newly

found. Rather we found a significant loss (p=0.030) for the most

important scenario class A. This finding is similar to the experi-

ence with software inspection teams. We find this result very

surprising as the elicitation of scenarios seems to be easier than

the decision whether a defect report is a false positive. Thus we

see considerable room for improvement of the process and tool

support of architecture evaluation meetings as proposed in [13].

H13 Team guidance effects: Teams who use a guided method

for scenario elicitation perform better than teams who use a non-

guided method. Similar to the individual guidance effects, we

expect teams who use a structured approach to focus on eliciting

more important scenarios in the given change categories. We

observed a significant difference (p-value=0.006) of real and

nominal teams regarding the number of identified scenarios

(scenario classes A, B, and C).

7. Conclusion and Further Work

Our analysis of the data collected from a controlled experiment

has provided some very useful insights into the significant as-

pects of meetings for developing scenarios during architecture

evaluation. It has also provided empirical evidence to support

some of our assumptions and experiences in designing and con-

ducting quality scenarios workshops. In the reported experimen-

tal context, software architecture evaluation meetings were not

effective for scenario generation compared to the collection of

the results from individual preparation. Therefore, we question

the effectiveness of workshop style meetings of large number of

stakeholders to develop scenarios for evaluating architectures as

described in [4] and suggest using an architecture evaluation

process without a meeting in order to maximize effectiveness of

scenario generation.

Alternatively, new approaches should be introduced with the

goal to keep scenario gains while avoiding scenario losses.

Different scenario elicitation techniques applied during individ-

ual preparation do not significantly influence meeting perform-

ance, i.e. the ratio of scenarios gained and lost. Actually this

result seems rather surprising especially when considering that

there should be a higher scenario overlap among participants

who follow a guided approach. Thus, teams using a guided ap-

proach could loose more scenarios than teams using no struc-

tured approach. However, this effect could not be observed,

possibly as architecture evaluation scenarios may be more di-

verse than defects reported in software inspection.

For further work in the area of architecture evaluation meetings

in general and scenarios development meetings in particular, we

suggest the introduction and assessment of new techniques

and/or tools such as groupware support systems or electronic

meeting systems that are well established in other areas. We

assert that such tools can help overcome many problems related

to paper-based meetings, e.g., a maximum of two participants

communicating at the same time. Therefore, we believe that such

tools can significantly increase the effectiveness and especially

efficiency of architecture evaluation meetings. We have pro-

vided empirical evidence to support the some of proposed solu-

tions in [4], however, further empirical research is required to

study the proposed solutions more rigorously and thoroughly.

REFERENCES

[1] Ali-Babar M. and Biffl S.: Eliciting Better Quality Archi-

tecture Evaluation Scenarios: A Controlled Experiment on

Top-Down vs. Bottom-Up, Proceedings of the International

Symposium on Empirical Software Engineering, 2006.

[2] Ali-Babar M., Kitchenham B. and Maheshwari P.: The

Value of Architecturally Significant Information Extracted

from Patterns: A Controlled Experiment. Proc. Australian

Software Engineering Conference, 2006.

[3] Ali-Babar M., Zhu L., and Jeffery R.: A Framework for

Classifying and Comparing Software Architecture Evalua-

tion Methods. 15th Australian Software Engineering Con-

ference, 2004.

[4] Ali-Babar M, Kitchenham B, Jeffery R., Comparing dis-

tributed and face-to-face meetings for software architecture

evaluation: A controlled experiement, Empirical Software

Engineering Journl, 13(1): pp. 39-62, 2008

[5] Barbacci M.R, et al.: Quality Attribute Workshops (QAWs),

Tech Report CMU/SEI-2003-TR-016, SEI, Carnegie Mel-

lon University, USA, 2003.

[6] Basili V.R., Green S., Laitenberger O., Lanubile F., Shull

F., Soerumgaard S., and Zelkowitz M.: The Empirical In-

vestigation of Perspective-Based Reading. Empirical Soft-

ware Engineering: An International Journal 1, 2, pp. 133-

164, 1996.

[7] Bass L., Clements P. and Kazman, R.: Software Architec-

ture in Practice. Addison-Wesley, 2003.

[8] Bass L., Klein M. and Moreno G.: Applicability of General

Scenarios to the Architecture Tradeoff Analysis Method.

Technical Report CMU/SEI-2000-TR-014, Software Engi-

neering Institute, Carnegie Mellon University, 2001.

[9] Bengtsson P. and Bosch J.: An Experiment on Creating

Scenario Profiles for Software Change. Annals of Software

Engineering, 9, pp. 59-78, 2000.

[10] Bengtsson P., Lassing N., Bosch J., and Vliet, H.: Analyz-

ing Software Architectures for Modifiability. Technical Re-

port HK-R-RES-00/11-SE, Hogskolan Karl-

skeona/Ronneby, 2000.

[11] Bianchi A., Lanubile F., Visaggio G.: A Controlled Ex-

periment to Assess the Effectiveness of Inspection Meet-

ings, Proc. Metrics 01, London, 2001.

[12] Biffl S., and Halling M.: Investigating the defect detection

effectiveness and cost benefit of nominal inspection teams,

IEEE Transactions on Software Engineering, Vol 23, Issue

5, p385-397, 2003.

[13] Biffl S., Grünbacher P., and Halling M.: A Family of Ex-

periments to Investigate the Effects of Groupware for Soft-

ware Inspection, Journal of Automated Software Engineer-

ing, Vol 13/3, p373-394, 2006.

[14] Biffl S., and Halling M.: Software Product Improvement

with Inspection, Proc. of Euromicro 2000 Workshop on

Software Product and Process Improvement, Maastricht,

IEEE Comp. Soc. Press, 2000.

[15] Biuk-Aghai R.P. and Hawryszkiewyez I.T.: Analysis of

Virtual Workspaces. Proceedings of the Database Appli-

cations in Non-Traditional Environments, 1999.

[16] Fagan, M.: Design and Code Inspections To Reduce Errors

In Program Development, IBM Systems J., vol. 15, no. 3,

pp. 182-211, 1976

[17] Gilb T., and Graham D.: Software Inspection, Addison-

Wesley, 1993.

[18] Host M., Regnell B. and Wohlin C.: Using Students as

Subjects - A Comparative Study of Students and Profes-

sionals in Lead-Time Impact Assessment. Empirical Soft-

ware Engineering, 5, pp. 201-214, 2000.

[19] Johnson P. M., Tjahjono D.: Assessing software review

meetings: A controlled experimental study using CSRS,

Proc. ICSE 97, Boston, 1997.

[20] Johnson P.M., Tjahjono D.: Does Every Inspection Really

Need a Meeting, Empirical Software Engineering, 1998.

[21] Laitenberger, O., DeBaud, J.-M.: An encompassing life

cycle centric survey of software inspection, Journal of Sys-

tems and Software 50(1): 5-31, 2000.

[22] Kazman R., Abowd G., Bass L. and Clements P.: Scenario-

Based Analysis of Software Architecture. IEEE Software

Engineering, 13 (6), pp. 47-55, 1996.

[23] Kazman R., Barbacci M., Klein M., and Carriere S.J.: Ex-

perience with Performing Architecture Tradeoff Analysis.

Proc. of the 21th International Conference on Software

Engineering, ACM Press, 1999.

[24] Kazman R., Bass L., Abowd G. and Webb M.: SAAM: A

Method for Analyzing the Properties of Software Architec-

tures. 16th Int'l Conf. of Software Eng., 1994.

[25] Kazman R., Carriere S.J. and Woods S.G.: Toward a Dis-

cipline of Scenario-based Architectural Engineering. An-

nals of Software Engineering, Kluwer Academic Publish-

ers, 9 (1-4), pp. 5-33, 2000.

[26] Land L.P.W., Jeffery R., Sauer C.: Validating the Defect

Detection Performance Advantage of Group Designs for

Software Reviews, Proc. ESEC / SIGSOFT FSE, 1997.

[27] Lassing N., Bengtsson P., Bosch J. and Vliet, H.V.: Ex-

perience with ALMA: Architecture-Level Modifiability

Analysis. Journal of Systems and Software, 61 (1), pp. 47-

57, 2002.

[28] Lassing N., Rijsenbrij D. and van Vliet, H.: How Well can

we Predict Changes at Architecture Design Time? Journal

of Systems and Software, 65 (2), pp. 141-153, 2003.

[29] Lassing N., Rijsenbrij D. and van Vliet, H.: On Software

Architecture Analysis of Flexibility, Complexity of

Changes: Size isn't Everything. Proc. of 2nd Nordic Soft-

ware Architecture Workshop, 1999.

[30] Liu A., Bass L. and Klein M.: Analyzing Enterprise Java-

Beans Systems Using Quality Attribute Design. Technical

Report CMU/SEI-2001-TN-025, Software Engineering In-

stitute, Carnegie Mellon University, 2001.

[31] Miller J., Wood M., Roper M.: Further Experiences with

Scenarios and Checklists, Empirical Software Engineering,

3, 37-64, 1998.

[32] Parnas D. L. and Weiss D. M.: Active design review: prin-

ciples and practices. Proc. 8th Int. Conf. on Software En-

gineering, pages 215-22, Aug. 1985.

[33] Parnas D.L.: On the Criteria To Be Used in Decomposing

Systems into Modules, Communication of the ACM,

15(12): pp. 1053-1058, 1972.

[34] Porter, A. A., Johnson, P. M.: Assessing Software Review

Meetings: Results of a Comparative Analysis of Two Ex-

perimental Studies, IEEE Transactions on Software Engi-

neering, Vol. 23, No. 3, 1997.

[35] Seaman C.B., Basili V.R.: Communication and Organiza-

tion: An empirical study of Discussion in Inspection Meet-

ings, IEEE Transactions on Software Engineering, Vol. 24,

No. 6, 1998.

[36] Votta L.: Does every Inspection need a Meeting? ACM

Software Eng. Notes, vol. 18, no. 5, pp. 107-114, 1993.

[37] Williams L.G., and Smith C.U.: PASA: A Method for the

Performance Assessment of Software Architecture. Proc.

of the 3rd Workshop on Software Performance, 2002.

[38] Wohlin C., Runeson P., Höst H., Ohlsson M.C., Regnell

B., and Wesslén A.: Experimentation in Software Engi-

neering - An Introduction, Kluwer International Series in

Software Engineering, Kluwer Academic Publishers, 2000.

