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ABSTRACT

[Context] Theory identification (TI) from research following the
hypothetical path aims at making SE theory from published em-
pirical research explicit. Challenges for TI include limitations of
searching for theory in digital libraries and the absence of a plat-
form with semantic support for theory identification and con-
struct definition. [Objective] The aim of this paper is to provide
process and tool support for efficiently identifying theory ele-
ments from published experiment research reports. [Method] We
propose supporting the analysis of experimental evidence for
theory element identification with a knowledge base (KB) and a
glossary, providing semantically enabled functions for identify-
ing and defining theory constructs. We evaluate the process and
tool support in the context of the software inspection method
Perspective-Based Reading (PBR). [Results] The proposed sup-
port helped effectively identifying 23 PBR theory constructs and
candidate propositions. Theory element identification was found
notably more efficient when compared to typical identification
approaches without the KB and glossary support. [Conclusions]
The support showed promising results when applied to PBR
experiments and should be investigated in a wider area of empir-
ical research.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software Validation
1.2.4 [Artificial Intelligence]: Knowledge Representation

General Terms
Measurement, Experimentation, Theory, Verification.

Keywords
Theory building, theory identification, empirical evidence, soft-
ware inspection, perspective-based reading.

1. INTRODUCTION

An important development in software engineering (SE) research
has been the rise of evidence-based SE [1] to investigate a wide
range of SE phenomena [2] in published empirical studies. Fol-
lowing a theory-building approach [3], SE researchers collabo-
rate to generate, evolve, and evaluate theories on topics, such as
defect detection methods for software inspection [4]. In this con-
text, researchers apply a variety of research strategies to generate
new theory and theory propositions (e.g., grounded theory) and
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to evaluate hypotheses derived from such propositions (e.g., by
conducting experiments) for evolving theories [5]. However, in
SE the hypotheses investigated by empirical studies are often not
derived from theory propositions and despite the growing mo-
mentum of empiricism, theory building and evidence do not
interact sufficiently [6]. Few empirical studies in SE relate phe-
nomena under investigation to the underlying theory. Johnson et
al. [7] argue that SE research is full of implicit theory, e.g., the
assumption from practical observation that applying require-
ments inspections have positive impact on quality [4].

Theory identification (TI) from research following the hypothet-
ical path [6] aims at revealing implicit SE theory in published
empirical research. Nevertheless, it seems to be no clear process
to identify theory and make it explicit for analysis and discussion
in the scientific community. Typical TI activities include search-
ing for empirical studies, extracting relevant empirical evidence,
and analyzing the evidence to identify theory elements and rela-
tions, such as constructs and proposition candidates [3].

No support for complex queries.
No taxonomy for theory constructs.

<> Search » Extract —  Analyze
Library

Paper Spreadsheet

Syntactic text-based  Hard to integrate for reuse
search capabilities. across work groups.

Figure 1. Challenges in theory identification
from published empirical research.

Figure 1 illustrates challenges related to those TI activities: (1)
Searching for published research is done in digital libraries,
which do not provide structured access to relevant theory and
empirical concepts (e.g., theory constructs, propositions, and
hypotheses) and rely on syntactic search capabilities. (2) Extract-
ed evidence is typically stored in spreadsheets, which are hard to
integrate for reuse across work groups. (3) There is no support
for complex queries to facilitate analyzing the extracted empirical
evidence and no taxonomy defining relevant theory constructs in
the different SE research topics.

In this paper we address these challenges aiming at supporting
SE theory identification from published empirical research. We
focus on empirically-based theories; i.e., theories that are built or
evolved from empirical research [3] and on recovering such theo-
ry from a specific type of empirical study: experiments.

As method to support theory identification we build on previous
work [8], the Systematic Knowledge Engineering (SKE) process



and its tool support’. SKE is based on the Systematic Literature
Review (SLR) process [9] and Knowledge Engineering (KE)
[10] practices to provide a Knowledge Base (KB) with semantic
technologies that enables querying for empirical evidence. The
resulting KB stores information on domain concepts of the re-
search topic linked to the available empirical evidence, repre-
sented by concepts of empirical studies [5] (e.g., investigated
hypotheses, treatments, response variables, results, and study
findings).

The use of KE semantic technology with ontologies, embedded
within the SKE tool, facilitates querying the KB on domain con-
cepts, e.g., on synonyms and related concepts, which goes be-
yond the syntactic search capabilities of typical digital libraries
and spreadsheets. In order to allow using the KB to support ana-
lyzing empirical evidence for TI we designed queries to facilitate
identifying the theory elements presented in [3]. We also de-
signed a glossary tool’ to support the definition of relevant theo-
ry constructs.

We illustrate and evaluate the proposed process and tool support
in the context of TI for the software inspection method Perspec-
tive-Based Reading (PBR). Applying SKE allowed integrating
empirical evidence from 14 identified PBR experiments into the
KB. Analyzing the query results enabled identifying 23 theory
constructs, defining them in the glossary, and designing a cause-
effect graph for representing theory proposition candidates.

Major findings of the evaluation were that the proposed process
and tool support worked well and that the researchers found the
provided query and glossary facilities usable and useful to facili-
tate analyzing empirical evidence for TI. Theory element identi-
fication was found notably more efficient when compared to
typical identification approaches without the KB and glossary
support (e.g., analyzing empirical evidence contained in spread-
sheets for TI). Additionally, the proposed support with the online
KB and glossary enable reuse of knowledge within scientific
communities and can therefore be used beyond the scope of local
work groups. Given those findings, we believe that the approach
can represent a step towards reverse engineering SE theory on
specific topics from published empirical research both with local
research work groups and for cooperating work groups in a sci-
entific community.

The remainder of this paper is organized as follows. Section 2
describes related work. Section 3 motivates the research issues.
Section 4 describes the proposed TI support illustrated with the
evaluation use case of TI from PBR experiments. Sections 5 and
6 discuss the evaluation results, threats to validity, and lessons
learned. Section 7 summarizes the research results and proposes
future research.

2. BACKGROUND

This section describes the theoretical foundations for this re-
search: Theory Building in SE (Section 2.1), Systematic Litera-
ture Reviews (Section 2.2), Knowledge Base Design and Popula-
tion (Section 2.3), and Systematic Knowledge Engineering (Sec-
tion 2.4). Further, we describe the foundations on Software In-
spections (Section 2.5) as input to the evaluation use case.

2.1 Theory Building in Software Engineering
The importance of SE theory has been claimed by several re-
searchers, but there has been little focus on how theory should be

described and built [3]. In this sense, Sjgberg et al. [3] suggest to
divide the description of a theory in four parts: the constructs
(basic elements), propositions (how the constructs interact), ex-
planations (why the propositions are as specified), and scope (in
which context the theory is applicable).

Theory can exist at different levels of sophistication or complexi-

ty. Yin [11] presents three of such levels, adapted to the SE con-

text by Sjgberg et al. [3] as:

e ILevel 1. Minor working relationships that are concrete and
based directly on observations.

e Level 2. Theories of the middle-range that involve some ab-
straction but are still closely linked to observations.

e Level 3. All-embracing theories that seek to explain SE.

According to Sjgberg et al. [3], the development of SE theories
from scratch is in early stages, and immediate efforts focus pri-
marily on levels 1 and 2. They propose a diagrammatic notation
for representing SE theory. In this notation, each construct
should belong to one of four archetype classes: Actor, Technolo-
gy, Activity, or Software System. These archetypes are related to
typical SE phenomena, in which actors apply technologies to
perform certain activities on a software system [3].

Johnson et al. [7] argue that SE research is full of implicit theory.

Having this in mind, Stol and Fitzgerald [6] investigated ways of

uncovering middle-range (Level 2) theories in SE. They focused

on extracting “theory fragments” (partial theory that has not been
completely developed yet) from single research papers. There-
fore, they consider three research paths for theory building:

e Study design path. This path comprises engineering solutions
for an element of the topic of study (e.g., developing a tech-
nique or tool to implement or support a conceptual model).

e Observational path. The goal of this path is to collect a set of
observations and to explain them in terms of a set of mean-
ingful concepts (for instance, using Grounded Theory [12]).

e Hypothetical path. This path refers to research that seeks to
test theory, for instance, conducting experiments. In particu-
lar, there are two sources of potential hypotheses; they can
originate from the topic of study (substance-driven research)
or from a theory (concept-driven research).

Since the rise of evidence-based SE [1] empirical studies (fol-
lowing the hypothetical path) are being undertaken more fre-
quently [2]. However, most of those studies are subject-driven
and not directly related to theory. Thus, interest sprouts in TI
from research following the hypothetical path. Typical activities
in this context are searching for empirical studies, extracting
empirical evidence, and analyzing the evidence to identify theory
elements, such as constructs and proposition candidates [3].

We believe that SLRs can help to gather empirical evidence on a
given research topic. Therefore, the foundations on SLRs follow.

2.2 Systematic Literature Reviews

Kitchenham and Charters [9] developed guidelines for perform-
ing Systematic Literature Reviews (SLRs) in the SE domain. In
those guidelines they state that the main reasons for conducting
SLRs are (a) summarizing the existing evidence concerning a
treatment or technology; (b) identifying gaps in current research
in order to suggest areas for further investigation; and (c) provid-
ing background to appropriately position new research.

The SLR guidelines [9] summarize three main phases of a sys-
tematic review: (a) Planning the Review, (b) Conducting the



Review, and (c) Reporting the Review. The PICO (Population,
Intervention, Comparison, Outcome) strategy [13] has been sug-
gested [9] in the planning phase for detailing the research ques-
tion elements in order to support developing the review protocol.
Conducting the review comprises identifying, selecting and as-
sessing the quality of primary studies so that data can be extract-
ed to facilitate data synthesis. A typical intermediate result of a
SLR is a spreadsheet with extracted data to enable answering
research questions. Reporting the review focuses on summarizing
the SLR results with focus on pre-defined research questions.
Lessons learned from applying SLRs to the SE domain are re-
ported in [2].

In the context of this research, the main advantage of using SLRs
is allowing to systematically identify evidence on a specific topic
and afterwards enable incremental updates. An example of such
updates is available in [14], where four independent SLR trials
were conducted in different years to incrementally build evi-
dence-based guidelines on defect causal analysis.

SLR reports and extracted spreadsheet data (i.e., intermediate
SLR results) represent the foundation for addressing individual
research questions, the starting point of an SLR. However, for TI
researchers want the capability to query on empirical evidence
(e.g., for hypotheses, factor treatments, and response variables) to
analyze results for theory elements. Therefore, we believe that a
KB can provide good tool support for bottom-up theory building.

2.3 Knowledge Base Design and Population
The process of building a knowledge base may be seen as a mod-
eling activity [10]. Building a knowledge base means building a
computer model with problem-solving capabilities comparable to
a domain expert. For creating a knowledge base, it is essential to
capture domain knowledge through content-specific agreements,
so both human and knowledge-based systems can access and use
the information [15]. For this purpose, formal ontologies have
been successfully used since the 1990s [16]. Ontologies can pro-
vide standard terminologies and rich semantics to facilitate
knowledge sharing and reuse [10]. OWL DL (Web Ontology
Language - Description Logic) is the most widely used language
for ontologies as it has the capability of supporting semantic
interoperability to exchange and share context knowledge be-
tween different systems, and keeps a balance between expres-
siveness and automatic processing. In addition, ontologies en-
hance searching mechanisms, which may refer to precise seman-
tic concepts rather than simple syntactic keywords, facilitating
the use of the knowledge stored in the ontology [15].

Once the ontology or the data model of the KB is defined, it is
necessary to capture the extracted data from information re-
sources in accordance to the KB. This process is called KB popu-
lation, and involves the creation, transformation and integration
of individuals (instances) into the KB. In our case, the infor-
mation resources for creating the KB are empirical study reports.
The KB population process may face integration problems if the
different information resources use varying structures to repre-
sent the same concepts. The Interchange Standard Approach, has
been stated as one of the best solution options for semantic inte-
gration [17]. The currently available tools to manage ontologies
usually require ontology experts. Therefore, ontology non-
experts need to be provided with effective and efficient interfaces
for both, importing and exporting knowledge, and for querying.

Concerning the use of such KB in the empirical SE context, the
SKE process has been proposed for systematically building a KB
containing empirical evidence on a specific research topic.

2.4 Systematic Knowledge Engineering

The SKE process [8] uses SLR-based empirical study identifica-
tion and KB integration to support knowledge reuse and exten-
sion and semantic querying on empirical evidence.

The key innovation comes from decoupling data extraction from
data synthesis (in SLRs both conducted within the Conducting
the Review phase) by integrating extracted data into a KB rather
than using it to apply a particular synthesis method for answering
a specific research question in the format of a SLR report. The
KB enables querying with structured access to concepts, such as,
hypothesis, factors and response variables, facilitating to explore
the evidence for different synthesis purposes, such as TI.

It comprises three stages [8]: Planning KB Creation, Conducting
Data Extraction, and Creating/Updating the KB. Details on each
of these stages follow:

e Planning KB Creation. The main goal of this phase is devel-
oping a review protocol to enable systematically identifying
relevant primary studies. In SKE, differently from SLRs,
there are no specific research questions, but a pre-defined
purpose of building a KB on empirical evidence on a given
research topic. This facilitates building the protocol based on
a specific configuration of the PICO strategy [13]. In this
configuration, the population represents the specified re-
search topic. The intervention represents the specified empir-
ical study types. The comparison is blank and the outcome
represents the elements to extract from the empirical studies
(e.g., hypotheses, findings).

e Conducting Data Extraction. This phase consists of follow-
ing the protocol’s search, selection, and assessment strategies
and extracting data from the identified studies, according to
information to be loaded into the KB’s data model. Different-
ly from the SLR process, data synthesis is not part of this
second phase.

e Creating/Updating KB. In this phase, the knowledge engi-
neer applies KE practices to design (or update) the KB data
model and to populate it by integrating the extracted data.
This role is also responsible for providing query facilities.
Those facilities allow other researchers to query the KB on
empirical evidence and using the results of such queries as
input to apply their own research synthesis methods, accord-
ing to their specific goals.

The SKE process is tool supported [8], the KB, implemented
using the Protégé' framework, uses semantic technology with
ontologies to facilitate semantic searches [18]. Besides the KB,
the tool support comprises a spreadsheet data contribution inter-
face and a web prototype for querying. The data contribution
interface was automated in Java by using a spreadsheet reader
library (e.g., Apache POI?) and an ontology library (e.g., Apache

! Protégé: http://protege.stanford.edu/

2 Apache POL: http://poi.apache.org/

3 Apache Jena; http://jena.apache.org/

4 SPARQL: http://www.w3.org/TR/rdf-sparql-query/
5 SKE-Tool: http://cdlflex.org/prototypes/ske/theory



Jena®). The Interchange Standard Approach integration [17] can
be applied for heterogeneous data integration. The queries of the
web prototype are implemented using SPARQL* query language.
Using ontology-specific features, the knowledge engineer
enhanced the KB by implementing semantic search functions
(e.g., searching on synonyms and related concepts). The SKE-
Tool prototype is available online’.

A concrete example of applying SKE can be found in [8], where
a KB with empirical evidence acquired through experiments was
built for software inspections (integrating data from the 31 most
recent identified research papers, ranging from 2006 to 2013).
We then elicited relevant stakeholder queries on empirical evi-
dence on software inspections through a survey with empirical
SE researchers from 6 research groups. The knowledge engineer
designed the queries and the KB allowed efficiently obtaining
accurate results for them. Software inspections are also related to
the evaluation use case of this paper.

2.5 Software Inspections

Software Inspections (SI) improve product quality by the analy-
sis of software artifacts, detecting defects for removal before
these artifacts are delivered to following software life cycle activ-
ities [4]. The traditional software inspection process by Fagan
[19] involves a moderator planning the inspection, inspectors
reviewing the artifact, a team meeting to discuss and register
defects, passing the defects to the author for rework, and a final
follow-up evaluation by the moderator on the need of a new in-
spection. In this context, inspection methods represent a means
for supporting inspectors in detecting defects during their indi-
vidual reviews. These methods include ad-hoc reading, checklist-
based reading, and reading techniques, such as Perspective-
Based Reading (PBR) [20] and Usage-Based Reading (UBR)
[21]. Practitioners typically want to know which method is well
suited to their context to find significant defects effectively and
efficiently with the available skills of inspector candidates.

Reading techniques [22] require inspectors to work systematical-
ly and actively with the target artifact, providing guidance on
how to read it and on what to look for. The research in this paper
focuses on PBR. The basic idea of this technique is that review-
ers assume one of several stakeholder perspectives, e.g., user,
developer, or tester, to detect defects so the union of perspectives
provides an extensive coverage of the entire artifact [20]. In this
way, PBR is expected to offer benefits, such as increased effec-
tiveness, goal-orientation, and transferability via training [20].

Several experiments have been conducted to evaluate expected
benefits, investigating a range of hypotheses concerning PBR.
Ciolkowski [23] applied a quantitative aggregation strategy to
provide summarized information on 12 PBR experiments to in-
vestigate whether PBR improves effectiveness when compared to
other inspection methods. His findings showed that there was no
clear positive effect of PBR. Compared to ad-hoc inspection
PBR was more effective, but compared to checklist-based inspec-
tions PBR was more effective when inspecting design documents
and code, but not when inspecting requirements. While Ciolkow-
ski’s analysis [23] mainly concerned effectiveness, those experi-
ments investigate a wide range of hypotheses. In terms of theory
building, the experiments follow substance-driven research on
the hypothetical path [6]. Therefore, the acquired knowledge is
not organized in terms of the underlying theory and an overview
of the observations and evidence is missing.

3. STRATEGY AND RESEARCH ISSUES

The overall goal of this research is taking a step towards support-
ing TI on a given research topic based on published experiment
research reports. The idea is trying to bottom-up reverse engineer
Level 1 theory from substance-driven research, generated follow-
ing the hypothetical path (see also Section 2.1). In software in-
spection, like in other SE topics, there is no consolidated over-
view on theory [7], which makes a top-down approach difficult.

The strategy to address the challenges illustrated in Figure 1
consists of providing a platform where researchers can query
empirical evidence to analyze it for identifying theory elements,
and define and discuss terms related to theory constructs. Figure
2 shows this strategy. Concerning the challenges related to the TI
activities, the search and extract activities are conducted by ap-
plying SKE. While the search still relies on syntactic text-based
search capabilities of digital libraries (1), extracted data is stored
in an extensible KB, which facilitates integration across work
groups (2). The analysis (3) is supported by online querying the
KB for theory elements and enabling the definition of identified
theory constructs in a glossary.

It is noteworthy that, depending on the extent of the KB (e.g., if
data of relevant empirical studies has already been extracted and
integrated by different work groups) the search for empirical
evidence (1) could also be performed directly on the KB, using
its semantic search capabilities. Figure 2 also shows the role of
the knowledge engineer, supporting the SKE process (conducted
by empirical SE experts, familiar to SLRs) by providing the data
model and query updates, and maintaining the KB.

S

Researcher

Empirical SE Knowledge
Expert Engmeer
b Support for complex queries.

Taxonomy for theory constructs.
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# | Theory '
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Synlacuc text-based KB facnltales integration
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Figure 2. Strategy to Support Theory Identification
from Published Research Results.

Considering this strategy, we derive three research issues (RIs)
related to the steps of the overall approach. RI-1: how to design
the KB data model and how to explore this data model to design
queries for efficiently supporting the TI analysis activity. RI-2:
how to populate the KB appropriately with data from relevant
experiment research reports to enable high-quality query results.
RI-3: how to use the proposed KB and glossary support in the TI
analysis activity to identify theory elements. Thus, the first two
RIs are related to preparing the TI support, while the third RI is
related to applying the support for identifying theory.

RI-1: KB Data Model and Queries. What are the relevant data
elements contained in experiments? How to link such data to the
specific research topics of the area of interest? How to query
such data for identifying theory elements?

We analyzed the data model defined in our previous work for
hosting data on experiments on software inspections [8], which
already was designed to contain the relevant data elements on



experiments linked to inspection topics. We considered that the
same data model can be used as a basis for identifying theory
elements. We follow the suggestion of Sjgberg et al. [3] on rele-
vant theory elements (i.e., constructs, propositions, explanations,
and scope) and investigate how this data model can be explored
to identify those theory elements.

RI-2: KB Population. How to systematically import data on
relevant experiments into the KB with appropriate data valida-
tion?

To address this research issue we suggest applying the SKE pro-
cess [8] for building the KB from published experiments. Key
idea is to conduct SKE’s data extraction step based on the struc-
ture of the defined data model (see RI-1). SKE’s resulting KB
can then be queried on empirical evidence according to specific
needs. To address theory identification needs, in our evaluation
use case we designed and implemented the queries to reveal the-
ory elements based on the investigation done concerning RI-1.

RI-3: Identifying Theory. How to use the proposed support to
analyze empirical evidence for identifying theory from sub-
stance-driven experimental research?

To support this analysis, SE researchers can use the online KB
queries to help identifying theory elements and register identified
theory constructs into the glossary. They may also represent can-
didate theory propositions. Therefore, they can use the diagram-
matic notation defined in [3], although we faced some practical
issues in doing so and ended up using a cause-effect graph (as
described in further details in Section 4). On the other hand,
researchers can also look for theory constructs in the glossary,
and then use the KB to query related proposition candidates.

4. THEORY IDENTIFICATION SUPPORT

The following subsections provide details on how each of the
research issues was addressed in our PBR evaluation use case.
Note that the sequence of activities in the research issues can be
seen as a process template for supporting theory identification on
other research topics. If a SKE KB has already been designed
and populated on the topic of interest the effort for analysis of
the theory elements can significantly benefit from reusing the
existing knowledge and directly addressing RI-3, which again is
facilitated if theory constructs are already defined in the glossary.

4.1 RI-1: KB Data Model and Queries

We analyzed and adapted the data model designed in our previ-
ous work for hosting data on software inspection experiments
[8], which already contains the relevant data elements on exper-
iments linked to inspection topics. This model is based on the
areas shown in Figure 3, which represent a high-level abstraction
view on the context in which empirical studies are conducted.
Empirical studies have data and artifacts, contribute to a Body of
Knowledge (BoK) on specific topics, and are performed by re-

searchers who provide publications.
H Researcher ‘

Empirical Study BoK

Empirical Study
Data/Artifacts

BoK Topic }—{ Publication

Figure 3. Major data model areas adapted from [8].

Figure 4 shows the data model entities for hosting data on exper-
iments, based on these areas and on experimental concepts de-
scribed by Wohlin et al. [5].

To link data from the empirical studies to the inspection BoK
topics, each topic was designed as relating to a set of inspection
parameters, extended from the list of parameters by Laitenberger
and Debaud [24]. This tailoring is shown in Figure 5. The com-
plete data model is available online’.

This data model allows querying for evidence from experiments
available on specific inspection BoK topics with queries, such as:
“Which hypotheses have been investigated by experiments on
PBR?” In this case, the query result lists the hypotheses of all
experiments related to BoK topics with parameter “inspection
method” equal to PBR (and its synonyms). According to specific
needs, it is also possible to list the results for each hypothesis in
the available experiment runs (confirmed/rejected) and infor-
mation on their statistical confidence. Moreover, the measure-
ments that led to each of those results can be obtained.

Finding . Publication Research | 1.7
Group [ ]
Inspection . .
BoK Topic Experiment Context
S -
Threat to ? 1.
Validity =
Hypothesis Experiment |—
Run |
1 ) N
Response . | Measurement Result
Variable
Factor Metric Treatment

Figure 4. KB data model overview adapted from [8].

Software
Inspection
BoK
Empirical | | Inspection | . 1.*| Inspection
Study BoK Topic Parameter
Process Artifact Model
Activity Inspection Tool
Method

Figure 5. Empirical studies linked to
inspection BoK topics adapted from [8].

In our opinion, a data model describing experiments as shown in
Figure 4 and relating them to BoK topics, as suggested in Figure
5 (topics are combinations of relevant parameters), can be used
as a basis for identifying empirically-based theory elements from
experiments on different BoK topics. Therefore, we investigated
how the data model can be explored to help identifying the theo-
ry elements suggested by Sjgberg et al. [3]: constructs, proposi-
tions, explanations, and scope. Figure 6 depicts the result of our
investigation.
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Figure 6. Identifying theory elements.

We believe that, concerning the concepts of experiments, in gen-
eral, abstracting domain concepts from factor treatments and
response variables can help to identify theory constructs. Regard-
ing propositions, the investigated hypotheses can provide useful
insights. For identifying explanations, sometimes the textual
description of findings included by authors in publications can be
helpful. Finally, the scope can be delimited based on the investi-
gated BoK Topic (and the configuration of its parameters) and on
the context of the experiment runs. Having this in mind, in our
evaluation use case we found the following queries of interest to
support theory identification on PBR based on the KB’s data
model:

e Constructs/FT: Which domain concepts have been used as
factor treatments in experiments on inspection method PBR?

e Constructs/RV: Which domain concepts have been used as
response variables in experiments on inspection method
PBR?

e Propositions/Hyp: Which are the hypotheses investigated in
experiments on inspection method PBR?

e Propositions/HypDC: Which are the hypotheses investigated
in experiments on inspection method PBR that include do-
main concept [domain concept] and synonyms?

e Propositions/HypFT: Which are the hypotheses investigated
in experiments on inspection method PBR and construct
[factor treatment] and synonyms?

e Propositions/HypRV: Which are the hypotheses investigated
in experiments on inspection method PBR and construct [re-
sponse variable] and synonyms?

e Explanations: Which are the reported findings of experi-
ments on inspection method PBR?

e Scope: What are the BoK Topics (parameters) and contexts
of experiments on inspection method PBR?

Having defined the KB data model and identified relevant que-
ries for identifying candidate theory elements, interest sprouts in
KB population (RI-2).

4.2 RI-2: KB Population

We propose applying SKE for systematically populating the KB
with data on relevant experiments. To populate the KB in our
PBR evaluation use case, we incrementally extended the content
of the software inspection KB created in previous work [8]. In
that occasion, following the search protocol defined in SKE’s
planning phase, 102 research papers with experiments on soft-
ware inspections (14 of them concerning PBR) were identified.
Data had been extracted from the 31 most recent ones (5 of them
on PBR) by a team of six independent empirical SE experts and
integrated into the KB by a knowledge engineer.

As in SLRs, the SKE protocol includes the search strategy, the
study selection criteria, the quality assessment procedures, and
the data extraction strategy. In our case, there was no extensive
effort invested in getting a complete set of inspection experi-
ments, rather a fair and objective sample to use as evaluation use
case. Thus, a single digital library was chosen: Scopus, which
according to [9] claims to be the largest database of abstracts.
The study selection and quality assessment criteria were also
relaxed. The study should be an experiment identifying investi-
gated hypotheses and published in a peer-reviewed publication
medium. Details on the search string derived from SKE’s sug-
gested PICO configuration’s synonyms can be found in [8]. For
data extraction, a spreadsheet template was prepared to enable
gathering the information to be loaded into the KB’s data model.

To allow identifying theory elements on PBR we completed data
extraction of the remaining 9 identified PBR experiments and
integrated the extracted data into the KB. As in the previous case,
data extraction took on average 2 person hours per paper. Data
checking took additional 0.5 person hours per paper. Data inte-
gration using the interface for KB data contributions was auto-
mated and took less than one minute. Once the data was integrat-
ed into the KB, the KE designed the queries so that they could be
used to support theory identification (RI-3) together with the
glossary tool’s online term definition facility.

4.3 RI-3: Identifying Theory

To address this research issue, we propose that researchers use
the support of the online KB queries to identify theory elements
and of the online glossary to register and define identified theory
constructs. They may also represent candidate theory proposi-
tions. If the online glossary already contains theory construct
definitions, researchers can also look for those constructs in the
glossary and use the KB to query related proposition candidates.

In the PBR evaluation use case the glossary initially did not hold
entries in advance. Therefore, they were registered as they were
identified. Thus, we started by executing the queries. Figure 7
shows a screenshot with partial results for query
Propositions/HypRV. This query lists all the hypotheses (8) and
results for experiments containing efficiency or synonyms in
their response variables. Running the queries facilitated
analyzing the experiment data in order to identify theory
elements. Complete results of the queries can be seen online’.
Some of the identified theory elements are discussed hereafter.

# Propositions/HypRV: Which are the hypotheses investigated in experiments on inspection method

PBR and construct [ variable] and sy yms?

Results (8 Rows)

Experiment_Narme Hypothesis_Statement

Figure 7. Hypotheses investigated on inspection method PBR.



Based on the results of query Propositions/Hyp it could be seen
that overall 90 hypotheses (including null and alternative hy-
potheses) were investigated by the 14 PBR experiments. By ana-
lyzing those hypotheses and accessing the results of queries Con-
structs/FT and Constructs/RV a set of 23 constructs, which ena-
ble to express the hypotheses used in the experiments, were iden-
tified. Due to space restrictions, the complete set of identified
constructs is available only online in the Glossary tool®!. A short
description of 12 key theory constructs follows:

e CO01 Effi — Inspection Efficiency: Number of defects detected
per unit of effort.

e (02 Effe — Inspection Effectiveness: Percentage of defects
detected during the inspection (0 to 100%), after a team
meeting or as consolidated outcome of the defect reports
from all team members in a nominal team.

e (03 Effo — Inspection Effort: Sum of all individual defect
detection efforts and the team meeting effort (person hours).

e (C04 TMeetEffe — Team Meeting Effectiveness: Percentage of
defects detected after the inspection meeting (0 to 100%).

e C06 TMeetEffo — Team Meeting Effort: Effort from discus-
sion of the individual defect reports in the inspection team.

e (CO07 TDDT — Team Mix of Defect Detection Techniques
(DDTs): Set of DDTs used in the team.

e C10 IEffe — Individual Effectiveness: Percentage of defects
detected by an inspector (0 to 100%).

e CI11 IDDT - Inspector Defect Detection Technique (DDT):
The specific DDT used by an inspector, e.g., PBR.

e C13 IEffo — Inspector Effort: Duration of the defect detection
activity for one inspector (hours).

e Cl4 SAT - Software Artifact Type: Require-
ments/design/code artifact and relevant languages used.

e C15 SAS — Software Artifact Size: Size of the artifact.

C16 TDN — Total Defect Number: Number of defects in the
inspected artifact.

Although all the constructs are related to the analyzed
experiment hypotheses, the most addressed constructs in those
hypotheses were related to effectiveness, C10 IEffe (40%) and
C02 Effe (22%). Given the absence of a taxonomy, we found
many variations in the terms and semantics of PBR experiment
reports while identifying constructs. The KB queries made it easy
to see the variety, facilitating the construct identification. The
Glossary allows to capture multiple definitions of the terms used
as constructs. The synonyms of the terms can be represented in
the KB to enhance the precision and completeness of future
query results.

To correctly link the terms identified in the hypotheses, factor
treatments, and response variables with the proper theory con-
structs took considerable expertise regarding the interpretation of
the experiment context. For instance, average effectiveness can
mean individual effectiveness (C10) or inspection effectiveness
(C02), depending on the context of an experiment design.

We tried to represent candidate theory propositions coming from
experiment hypotheses applying the framework for describing SE
theories presented in [3]. However, we faced practical
difficulties. For instance, some constructs, such as effort and
effectiveness, fit to several archetypes and could not be
consistently placed into the proposed diagram. Both could be

6 http://glossary-sis.herokuapp.com/tags/Theory_Construct_SI

related to actor, technology, and software system. Concerning the
archetypes, we noted that the activity archetype in our case, as in
other theory representation experiences [3] [25], would be used
only for scoping (to “defect detection”) and not have any related
constructs. Moreover, mapping several constructs lead to tangle
of proposition arrows, not well supporting further analyses.

Therefore, we represented those theory proposition candidates
using a directed graph containing potential cause-effect relation-
ships between the constructs and different colors for the arche-
types (applying the color that seems to fit best). The resulting
diagram for the 12 constructs previously described can be seen in
Figure 8. This figure misses some relevant identified constructs,
which may have effects on the ones presented (e.g., team size,
inspector capability, and defect classes). The complete current
theory construct graph for all the 23 identified constructs is
available online’.

This graph shows, for instance, that the software artifact type
(C14 — SAT) and its size (C15 — SAS) influence the defect detec-
tion technique (C11 — IDDT), which in turn has an effect on the
individual effectiveness (C10 — IEffe), as the total defect number
(C16 — TDN) may also have. Thus, each of the arrows represents
candidate propositions with specific construct values and effects
to be evaluated by empirical studies. These propositions were
added mainly using researcher background and expertise. Note
that queries Propositions/Hyp* can be used to search for
empirically supported propostions on a given construct and its
synonyms. The available empirical evidence is not represented in
the cause-effect graph and can be stated as future work.

C04
| CO1 Effi |4—| CO02 Effe |<—| TMeetEffe k—' C10 |Effe
Co6
TMeetEffo

C16 TDN C158AS |

cor
TDDT

C14 SAT |

O Actor

[ Software System
[ Technology

[ Activity

Figure 8. PBR theory constructs and candidate propositions.

C03 Effo C13 IEffo

The query Explanations retrieves the main findings of the papers,
which might provide useful insights into explaining the
empirically-based theory propositions. For instance, in the
replicated experiment focusing on individual reviewer
effectiveness described in [26], the investigated hypotheses
obtained from query PropositionsHyp include: “Individuals
applying each PBR perspective perform better than individuals
applying Ad-hoc reading with respect to their mean defect
detection rate” which can be seen as “Partly Confirmed”. The
finding, obtained from query Explanations which explains this
observation is: “The results showed that PBR was more effective
than Checklist for one of the two requirements documents used”.

Finally, query Scope showed that the scope of the empirically-
based theory is mainly related to defect detection activities in in-
vitro experiments conducted offline with toy problems
containing seeded defects (typically about 20 to 30) in simple
and small artifacts inspected by students. This might represent a
problem, since in practice artifacts tend to be larger and more
complex.

5. EVALUATION AND DISCUSSION

This section reports on the evaluation of the proposed theory
identification approach and its support based on our PBR evalua-
tion use case. The effort spent on each research issue (steps) for



PBR theory identification is shown in Table 1. It is important to
state the RI-1 (KB data modeling and query design) and RI-2
(KB population) are related to preparation, while RI-3 is related
to analyzing empirical evidence for TI.

Table 1. Effort for PBR theory identification.

Data Model: O ph (reused).

Query Definition: 4 ph (reusable).

Protocol: 0 ph (reused).

Data extraction: 2.0 ph per experiment (reusable).
Data validation: 0.5 ph per experiment (reusable).
Theory elements analysis based on queries: 6 ph.
Dependency graph building: 3 ph.

It was possible to completely reuse the data model from previous
work [8], since the same research area of software inspections
was addressed. For experimental data on other research areas, the
data model shown in Figure 4, based on the empirical study con-
text and experimental concepts could also be reused. However,
the tailoring of the research topics into specific parameters (or
combinations of parameters) would be necessary (see Figure 5).
Nevertheless, we believe that such tailoring (identifying appro-
priate parameters) requires only reasonable effort.

It can be seen that main effort was related to data extraction and
validation (in total 35 person hours for 14 experiments). Howev-
er, based on our previous SLR experiences, such as [14], we
found the data extraction effort comparable to the data extraction
effort in SLRs. It is also noteworthy that the extracted data can
be reused beyond the scope of a local workgroup and that new
data can be extracted and incrementally integrated into the KB.

The pre-project and KE setup effort are shown in Table 2. The
pre-project effort is related to building the pre-existing SKE tool
support and the newly developed and reusable glossary facility.
The KE setup effort relates to the activities of the knowledge
engineer to create the KB ontology, implement the queries, and
using the data contribution interface to populate the KB.

Table 2. Pre-project and KE setup effort.

SKE tool support dev.: 80 ph (reused).
Glossary implementation: 60 ph (reusable).
Creating the KB ontology: 16 ph (reused).
Query implementation: 32 ph (reusable).
Data import (automated): < 0.5 ph.

SKE’s data contribution interface was effective in enabling con-
tributions from researchers and efficient by requiring low effort
and little time for such contributions to be imported. Considering
all the new data model entities such as, experiment (9 entries),
hypotheses (54 entries), factors (11 entries), response variables
(79 entries), experiment runs (13 entries), treatments (72 entries)
and measurements (392 entries), among others (see Figures 4 and
5), more than 2,500 data elements (cells) were effectively im-
ported into the KB within less than one minute.

Considerations on the effectiveness, from the point of view of the
researchers, of the solutions provided to address the research
issues in the PBR theory identification use case are summarized
in Table 3.

On the effectiveness of the queries (defined in RI-1), we high-
light the semantic technology, which allows querying on domain
concepts, synonyms and related concepts (gathered during data

extraction or added to the KB afterwards). For instance, with
synonym search enabled, query Propositions/HypRYV, when
searching for hypotheses with response variable similar to do-
main concept “efficiency”, is able to retrieve hypotheses with
response variables as “number of defects per hour” or “number
of faults per hour”, since those variables represent the same con-
cept.

Table 3. Effectiveness of solutions provided for research
issues in the PBR theory identification use case.

Data Model: Effective. Allowed characterizing
inspection experiments (model of similarities and
variations) and their results. Supported both, data
extraction and querying.
Queries: Effective. Provided correct results against
test cases elaborated based on the 14 PBR experi-
ments in the KB. The semantic technology allows
querying on domain concepts, synonyms and
related concepts.
Effective. We were able to identify relevant exper-
iments, extract data from them and integrate it into
the KB.
Effective. Theory elements could be identified
based on the query results and theory constructs
were registered into the glossary.
Concerning the effectiveness of the planned search protocol (re-
lated to RI-2), it is important to mention that it did not intend to
get the complete set of inspection experiments but a fair and
objective sampeand that the SKE KB can always be extended by
adding data from more experimental studies. Therefore, as ex-
pected, when scoping to PBR, the 14 identified experiments did
not match the 12 analyzed by Ciolkowski [23]. In fact, the
merged set contains 20 experiments. Figure 9 shows the citation
graph of these 20 PBR experiments. The 6 missing ones are
shown in grey. Concerning the missing ones: 4 (20%) were not
indexed in Scopus (one dissertation, one technical report, and
two conference papers) and 2 (10%) did not match the search
string in the title, abstract, and keywords because of using differ-
ent synonyms. The latter reflects the limitation of syntactical
search capabilities in digital libraries.

Biftatal
00
£

Esrti et

Figure 9. PBR experiment paper citation graph.

Finally, we believe that for the analysis activity for theory identi-
fication from empirical evidence (RI-3) the KB+glossary support
is more effective and efficient when compared to both, doing so
directly from digital libraries or based on spreadsheets containing
extracted empirical evidence. Concerning effectiveness, with the



support from the query results it was possible to identify 23 theo-
ry constructs and to represent candidate propositions graphically.
The glossary allowed registering definitions for the identified
constructs. Moreover, information on theory elements explana-
tions and scope could also be retrieved.

Compared to analyzing empirical evidence for theory identifica-
tion directly from digital libraries, the support offers significant
improvement by providing queries with structured access to con-
cepts, semantic search capabilities, and retrieving candidate theo-
ry elements instead of complete research papers. The total effort
for identifying theory elements by reading the 14 papers would
certainly be higher than 6 hours (informally comparable to the
time for reading up to three papers). Compared to analyzing em-
pirical evidence directly from spreadsheets, this would also re-
quire more effort, since spreadsheets have limited support for
complex querying and traversing all the data elements, manually
identifying synonyms and filtering concepts would not be ex-
tremely difficult for large numbers of experiments. Based on the
spreadsheets of our evaluation use case we perceive that doing
the same task by directly and manually using them would certain-
ly be error prone and take much more effort.

In the context of this comparison, it is noteworthy that by using
the KB the extracted data can be reused and extended beyond the
scope of a local workgroup, since new data can be extracted and
incrementally integrated (eventually using semantic integration
facilities in the case of heterogeneous data sources). As a result
of our evaluation use case, for instance, the PBR KB and the
glossary are now available online’ for researchers to extend and
to use for analyzing empirical evidence for identifying and dis-
cussing theory based on the query results and term definitions.

6. THREATS TO VALIDITY AND
LESSONS LEARNED

The goal of this research was taking a step towards the identifica-
tion of theory on a given research topic based on information
from experiments, following the hypothetical path [6]. Also, we
focused on identifying Level 1 theories and on how to make
these theories explicit (although insights into more abstract Level
2 theories may have been provided).

Threats to Validity. A major threat to internal validity was hav-
ing experts involved in analyzing the empirical evidence to iden-
tify theory based on the proposed support. This task involves
interpretation and reasoning and therefore results may be influ-
enced by expertise. Three of the authors of this paper are experts
in software inspections. Therefore, they could have identified the
constructs and drawn the theory graph directly from reading re-
search papers, although this would require considerably more
effort than the 6 person hours using the KB query results as input
to analysis.

Concerning external validity, we identified two threats related to
decisions taken in our evaluation use case: (i) the chosen re-
search area of software inspections, and (ii) gathering knowledge
from experiments. Software inspections are widely spread in
academia and industry and many empirical studies have been
conducted in this area, which may have facilitated the KB build-
ing and theory element extraction. Regarding the experiments,
valuable theories may rise from results of other empirical strate-
gies, such as case studies. We did not evaluate the feasibility of
supporting theory identification based on such strategies.

Lessons Learned. Main lessons learned concern effort, and suc-
cess and risk factors for effectively and efficiently supporting
identifying SE theory from empirical studies. On the effort, we
believe that the real bottleneck to uncover theories at the pace of
new empirical studies being conducted is getting the community
involved in contributing. Of course, starting to relate empirical
SE research directly to theory and encouraging the use of con-
cept-driven instead of substance-driven research also could help
to swing the balance in the direction of SE theory.

A major success factor is properly involving a knowledge engi-
neer for KB administration, data integration and providing query
facilities. An identified risk factor, on the other hand, is not get-
ting the research community involved for long-term collection
and use of data.

7. CONCLUSIONS

SE research is full of implicit theory [7]. In this paper, we ad-
dressed challenges in supporting reverse engineering theory from
published research, such as limitations of searching for theories
in digital libraries and the absence of a platform where research-
ers can query for candidate theory elements to analyze and define
terms related to theory constructs.

We focused on supporting recovering theory from published
experiment research reports. Our strategy consisted of providing
online support® in which the search for theory elements is sup-
ported by querying an extensible KB and the definition of theory
constructs is supported by a glossary tool. For building the KB
we proposed using the SKE process [8], which builds on the
SLR process and on KE practices to provide a KB with semantic
technology that enables querying for empirical evidence. A set of
queries for identifying candidate theory elements was designed
by analyzing a common data model for hosting experiments.

For evaluation, we applied our strategy to identify PBR-related
theory elements. In this context, the proposed process and tool
support was effective and efficient. SKE was used to extend a
software inspection KB with knowledge acquired from PBR-
related experiments. Based on the query results it was possible to
identify 23 theory constructs and to represent candidate theory
propositions as a dependency graph. The glossary supported
defining theory constructs. The researchers found the provided
query and glossary facilities usable and useful to support analyz-
ing empirical evidence for theory element identification.

The support prototype is available online’, enabling researchers
beyond the scope of a local workgroup to discuss and evolve
PBR-related theory based on the queries and on the glossary’s
theory construct definitions. This alternative process and support
offers significant improvement over searching for theory ele-
ments in digital libraries (e.g., providing a constructs taxonomy,
semantic querying with structured access to concepts, and re-
trieving candidate theory elements instead of papers) or in local
spreadsheets with extracted data (e.g., providing a constructs
taxonomy, semantic querying, and integration facilities for reuse
across work groups). Therefore, we believe that this research can
represent a step towards supporting reverse engineering SE theo-
ry from published research in a scientific community and that it
should be investigated in a wider area of empirical research. Giv-
en the growing volume of empirical SE research, a critical factor
is getting the community involved in this quest for uncovering
decades of collected implicit theory, and in adopting concept-
driven approaches for new empirical research.



Future work includes providing additional synonyms to the KB
for the identified theory constructs, enabling new queries to re-
trieve empirical evidence on theory propositions relating two or
more theory constructs (and their synonyms). We have received
promising interest from empirical researchers and meta research-
ers to investigate the use of the proposed support in other SE
research topics and on other empirical strategies. Finally, we plan
to extend the tool support, setting up a platform to allow building
knowledge and identifying theories based on the collective intel-
ligence in empirical SE communities.
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