
Elements of Software Ecosystem Early-Stage Design
for Collective Intelligence Systems

Juergen Musil
jmusil@computer.org

Angelika Musil
angelika@computer.org

Stefan Biffl
stefan.biffl@tuwien.ac.at

Christian Doppler Laboratory for Software Engineering Integration for Flexible Automation Systems
Institute of Software Technology and Interactive Systems

Vienna University of Technology, Vienna, Austria

ABSTRACT
User-contribution driven software service platforms like crowd-
sourcing and social media services represent an efficient way
of aggregating and distributing knowledge. However, only
little research has been reported on early-stage design of
software ecosystems (SECOs) for software service platforms,
in particular in the collective intelligence (CI) domain. In
this work we analyze needs for CI-centered SECOs lead-
ing to new research challenges. We have identified self-
organization and feedback mechanisms as essential charac-
teristics in CI-centered SECOs and thus introduce design
elements for structuring them properly at an early stage of
design. We discuss the concept with a real-world use case
from a widely used CI-centered SECO, Wikipedia. A major
result is the successful mapping of the design elements to
the specific SECO elements.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services—Web-based services; H.5.3 [Information
Interfaces and Presentation]: Group and Organization
Interfaces—Collaborative computing, Web-based interaction;
H.1.2 [Models and Principles]: User/Machine Systems—
Human factors, Human information processing

General Terms
Design, Human Factors, Theory

Keywords
Collective intelligence, human computation, software archi-
tecture, software ecosystems, stigmergic information system

1. INTRODUCTION
Software service platforms relying on user contributions

like crowdsourcing platforms, social networking services or

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
WEA ’13, August 19, 2013, Saint Petersburg, Russian Federation
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2314-7/13/08 ...$15.00.
http://dx.doi.org/10.1145/2501585.2501590

virtual worlds have proven to efficiently aggregate and dis-
tribute knowledge [18, 15]. Examples are posting and shar-
ing activites on Facebook1 2, looking up restaurant peer re-
views on Yelp1, or editing a Wikipedia1 article. Successful
platforms create sustainable virtual ecosystems, each sup-
ported by a distinct user community, which generates a con-
tinuously growing repository of valuable knowledge and data
[15]. Today around 50% of the top Alexa1-ranked websites
are user-contribution driven and each of them has generated
a prosperous software ecosystem. Due to their openness and
stickiness [4], SECOs are also a good strategy to obtain a
hard-to-replicate, competitive advantage [14, 12]. Although
some research has been reported trying to understand estab-
lished SECOs, only little effort has been undertaken so far
to understand the early-stage design of SECOs, in particular
the SECOs based on a software service platform. Deepen-
ing the understanding of early-stage SECO design is thus
important, since (1) it is cheaper to change software design
in early phases, and (2) many companies which launch ser-
vice platform SECOs are start-ups and have only one chance
to design and build the system right. This work focuses on
the early-stage design of software service platform ecosys-
tems in the context of collective intelligence. The paper
presents self-organization/ feedback mechanisms and design
elements, which can be used by system architects to guide
conceptual design for collective intelligence-centered SECOs.

The remainder of this paper will discuss related areas of
CI-centered SECOs and their relationship. Based on the
identified key characteristics we will present basic design el-
ements used for early-stage SECO design and discuss them
with a real-world example use case. Finally, the paper con-
cludes and illustrates future research.

2. RELATED WORK
This section presents an overview of related work on col-

lective intelligence, software ecosystems and self-organization.

2.1 Collective Intelligence
Collective intelligence (CI) is broadly defined by Malone

et al. [15] as ”groups of individuals doing things collectively
that seem intelligent”. Depending on the intensity of com-
putational or human tasks, CI systems can be categorized
into three groups [17]: crowdsourcing, human computation,
and social computing.

1www.{name}.com
2All URLs referenced in this publication have been last vis-
ited at 06/30/2013.

1. Crowdsourcing describes the outsourcing of a task to
an undefined group of individuals instead of assigning it to
a (single) employee [11], like the cataloging of landforms
(NASA Clickworkers3) or prediction markets [15]. Success-
ful crowdsourcing platforms are Wikipedia1, InnoCentive1

and Amazon Mechanical Turk4.
2. Human computation aims to replace computing power
with human work to ”perform tasks that computers cannot
yet perform” [1]. According to Quinn et al. [17] this means
that the problem is per se suitable for computation, but it
is yet not solvable by computers and that the ICT system
and process guide overall user participation. An example for
human computation would be Captchas [1].
3. Social computing describes the facilitation of human in-
teraction among individuals through an ICT system act-
ing as a mediation hub [17]. Examples would be social
networking services (Facebook1) and community platforms
(YouTube1, FourSquare1).
All three system groups share the commonality of (1) an
ICT system as the locus of user coordination and (2) pro-
cessing tasks that are split between the ICT system and the
users. Such a hybrid configuration of human groups and
machines addresses new solution spaces which couldn’t have
been reached by ICT systems (e.g. AI-only-based systems)
or human groups alone.

2.2 Software Ecosystems
Software ecosystems (SECOs) are a young field in soft-

ware engineering, which focuses on collaboration networks
of communities and their interrelated business models and
motivations surrounding a central piece of software, soft-
ware service platform, or IT standard. So far multiple def-
initions of the term software ecosystem exist, depending on
the scholastic viewpoint. Selected examples of definitions
can be found in Kittlaus et al. [14, p. 25] Bosch et al. [5,
p. 68], Jansen et al. [12, p. 2] and Hanssen et al. [9, p.
3]. Though there are multiple views on SECOs, Hanssen
et al. [9] have identified five reoccuring aspects in SECO
literature, which are illustrated in figure 1:
a. Central reference organization: Each SECO is gov-
erned by a coordination organization which is instrumental
in overseeing and guiding the evolution of the ecosystem.
Jansen et al. [12] note that these organizations are the main
”beneficiaries of software ecosystem growth who have instru-
ments available to influence the development of the platform
or the surrounding ecosystem”. Also such an organization
acts as a hub to which the ecosystem members are linked and
which is able to exercise some form of control (extensive or
partial) upon the members [9]. Examples of coordination
organizations are privately owned companies (Apple, Face-
book) or consortia (Apache Foundation, OSGi Alliance).
b. Networked character: It has been observed that soft-
ware ecosystems trend to generate network structures be-
tween its actors and organizations. In fact a central expec-
tation of pursuing an ecosystem strategy is to thrive on net-
work effects [13] which arise from these interdependencies
[14, 9, 12]. Bosch [5] addresses this aspect from the per-
spective of openness by arguing that a software ecosystem
approach requires a ”community-centric way of collaborating
and coordinating” relying on external contributors. An ap-
proach which stands in strong contrast to intra-organizational

3http://nasaclickworkers.com
4http://mturk.com

Figure 1: Overview of a generic software ecosystem.

paradigms and solutions like software product lines (Bosch
2010). Figure 1 (b) illustrates the networked character by
depicting a network of actor groups exchanging software,
data, services and money in various configurations.
c. ICT platform: The ICT platform is the central driver
around which the software ecosystem evolves. Gawer et al.
[8] define the platform aspect of a SECO as ”A foundation
technology or set of components used beyond a single firm
and that brings multiple parties together for a common pur-
pose or to solve a common problem”. ICT responsibilities
described by Hansen et al. [9] may include communica-
tion, coordination, development, solution deployment and
economic transactions. Figure 1 (c) depicts the ICT plat-
form as an abstract element, since it depends on each SECO
of what the platform may look like. Examples of a platform
are an app store, a social networking service, a technical
standard or a programming framework.
d. Shared values: Shared values can be of extrinsic (soft-
ware product, platform, complementary services, business
domain) or intrinsic (motivation of individual actors and or-
ganizations) nature [9, 12].
e. Self-regulation: Self-regulation is achieved through
feedback and regular interations between actors [9].

It can be observed that matured instances of CI systems
like Facebook are consistently related to software service
platform SECOs [4, 12]. Bosch notes on the inception of
”application-centric, domain-specific SaaS”SECOs, that they
do not happen to be SECOs per se, but develop in a 2-
phase process [4, p. 114]. At the beginning there is a suc-
cessful online application, which generates a considerable
user/customer base. In the second phase, the application
is opened to 3rd party developers and content providers.
Though, for CI systems the case is different, since as user-
contribution driven software service platforms, they have to
be open to external content (via user community) already in
the first phase. Openness to external contributors is a key
aspect, which CI systems and SECOs share. Instances from
both groups are also often mentioned as examples within the
OpenInnovation movement [7].

2.3 Self-Organization
This section discusses self-regulatory mechanisms, which

have been identified as an important SECO aspect, from the
perspective of self-organization in detail.

Self-organization describes a process where a system in-
creases its internal organization by itself [3]. Two main fac-
tors for self-organization are emergence and feedback. Emer-
gence describes a phenomenon, where a system property ex-
ists on a macroscopic level, but not on a microsocopic level
or vice versa [2]. Feedback describes a circular process where
the output of a system is returned to its input in order to reg-
ulate its further output, also refered as feedback loop [6]. It
can be distinguished between positive feedback (higher out-
put increases further input) and negative feedback (higher
output reduces further input). Feedback loops have been
identified by Brun et al. [6] as an important generic mech-
anism for self-adaptation in software-intensive systems and
argued as first-class entities in the design and development
of self-adaptive systems [6]. An interesting control process
is stigmergy (from Greek stigma: sign, and ergon: work),
which is a bio-inspired indirect communication mechanism,
where agents communicate by modifying their environment
[3]. The environment is used as a ”shared medium for stor-
ing information so that it can be interpreted by other in-
dividuals” [10]. Using the example of termites, Bonabeau
et al. [3] describe the feedback loop in stigmergy as ”a
stimulating configuration triggers the response of a termite
worker, transforming the configuration into another config-
uration that may trigger in turn another (possibly different)
action performed by the same termite or any other worker
in the colony”. As stigmergy is subjected to be involved
in content-oriented collaborative environments [10, 18] (e.g.
Wikipedia), from which most fall also into the previously
indentified categories of CI systems, it can be hypothesized,
that stigmergy could be a relevant factor in the general pro-
cess design of CI systems as well.

The previous paragraphs have introduced to CI systems
and SECOs and discussed the relationship between both.
Since feedback loops and control processes are key elements
of any self-organizational system, they also require particu-
lar attention in the design of software ecosystems.

3. DESIGNING SECOS FOR CI
The design of SECOs is due to their inherent evolving na-

ture a constant process. Therefore, this work limits its scope
focusing on the early-stage conceptual design of SECOs and
addressing the following research issues:

• R1 - Identification of a self-organization and feedback
mechanism concept for CI-centered SECOs.

• R2 - Identification of design elements, which are nec-
essary for the early-stage design phase of CI-centered
SECOs.

• R3 - Mapping the concept with the real-world use case
of the CI-centered SECO Wikipedia.

The following section presents the extension of a generic
SECO to a generic CI-centered SECO. The extension is
achieved by the application of the Stigmergic Information
System (SIS) model [16] on the generic SECO. The SIS
model is a novel architectural model for software platforms,

Figure 2: CI-centered SECO, based on the SIS
model.

which enables self-organization through environment-
mediated indirect communication for human agents. A dis-
tinctive feature of the SIS model is that the model supports
coordination artifacts and feeback loops as first-class citizens
during system design. The SIS model aims to ”facilitate the
building of an information network by allowing actors to cre-
ate / modify network elements and thereby share informa-
tion among each other” [16]. Whereby its main capability is
to bottom-up ”harness collective intelligence by stimulating,
aggregating, leveraging, and distributing user contributions”
[16].

The following paragraphs relate the areas of the SIS model
[16] actor base, information network, control services and
software ecosystem to the elements of the extended CI-centered
SECO in figure 2:
Actor base: The collectivity of human agents (e), which
engage with the artifact network in a consuming or produc-
ing activity (b1).
Information network of artifacts: The artifact network
(c) preserves contributions made by the actor base and logs
the usage behavior of each single actor. The artifact network
follows the structure of a scale-free network [19], which cre-
ation follows the two steps of (1) growth: network growth is
achieved by introducing new vertices, and (2) preferential at-
tachment [19]: a new vertex is more likely linked to a vertex
with many links. The shared values in CI-centered SECO
(d) are firstly the coordination artifacts (e.g. Wikipedia arti-
cles) and the actor contributions, and secondly complemen-
tary services and apps, which build upon the aggregated
information within the artifacts.
Control services: The control services maintains the ac-
tivity level of the feedback loop between actors and artifacts
(L1), monitors network behavior and regulates artifact net-
work access (b2) for 3rd-party content providers, premium
service clients and other SECOs.
Software ecosystem: The SECO is built upon the artifact
network as a resource pool and the ongoing stream of actor
contributions in the artifacts. 3rd-party dependent symbi-
otic services [16] may be able to access the artifact network

Figure 3: Design elements for CI-centered SECOs.

in order to provide additional services to actors. Normally
the reference organization (a) operates the ICT platform
(b1, b2, c), which equals to application-centric SECOs [4].

As long as the stigmergy cycle (L1) generates sufficient ac-
tor/artifact activity, this center of growth can be exploited,
especially in early stages, in a ’Bilbao-Effect’-like manner5

by building up a software service platform ecosystem, which
seeks to either capitalize on the generated contributions (e.g.
special third party access, reports) or the stigmergy cycle it-
self (e.g. transaction fees). System level and software ecosys-
tem level are often interdependent, so that changes on one
level affect the other, which makes cause-and-effect predic-
tion of the overall system behavior particularly challenging.

4. BASIC DESIGN ELEMENTS
This section discusses basic design elements for CI-centered

SECOs. Figure 3 illustrates the relationships between the
five main elements: actor, artifact, contribution, actor record
and system.

Actor. An actor is a human agent, who has privileges to ma-
nipulate the artifact through contributions (e.g. via a user
interface).

Artifact. An artifact is a container with a defined data struc-
ture, which is the same for all artifacts. A certain part of the
artifact can be filled with content, which can be manipulated
through contributions by one or more actors. The artifact
is persistent, so that an artifact’s content is shared and ac-
cessible by the actors. An actor can create (= instantiate
a new artifact with no content) and delete an artifact and
change its content, but not its data structure. Actors can
link artifacts together, thus causing the growth information
network of artifacts (artifact network).

Contribution. A contribution is any modification of an arti-
fact’s content through an actor either by adding or remov-
ing content from the artifact. Typically all actors have the
same means of contributing avaiable. Privileged contribu-
tion forms may exist (e.g. for admins, editors).

Actor Record. The actor record (AR) is a layer through
which the actor accesses the artifact network and its nodes,
the artifacts. The AR stores data, which is necessary for the
actor to access the artifact network (e.g. credentials) and
logs in addition any activity of the actor within the artifact
network. Each actor has only one AR. Although the AR
stores a considerable amount of an actor’s generated data,

5http://www.forbes.com/2002/02/20/0220conn.html

Table 1: Design elements mapping in Wikipedia.

Element Wikipedia Scenario

Actor A user who is logged in with her
Wikipedia account.

Artifact The artifact is realized in the article con-
cept, which consists primarily of unstruc-
tured text that can be enriched with im-
age, audio and video sources. Each article
has a ’talk page’, where actors are able to
exchange their views about the article.

Contribution Any article manipulation, as well as any
discussion on the article’s ’talk page’.

Actor Record A Wikipedia user account.

System The Wikipedia system is implemented by
a scaled-up MediaWiki platform. The
ICT platform pushes article changes and
discussion posts to other actors and gives
them guidance about the activity level of
articles and other actors. Also, the sys-
tem bridges between Wikipedia instances
of different languages in order to stimu-
late the translation/adaption of an arti-
cle’s topic in other languages.

it is not a profile, but it can be used by the system as a data
basis for generating an actor’s profile.

System. The system layer is the governing environment,
which coordinates actors and artifacts, by maintaining a
perpetual feedback loop of actor contributions (stigmergy cy-
cle). Since actors and artifacts are isolated in virtual space,
the system has to act as the medium, which raises new arti-
fact contributions to other actors’ attention in order to stim-
ulate further contributions. This is a remarkable distinction
to stigmergy in the physical world, where the transportation
medium (e.g. air) between agents and artifacts ’just exists’.

5. EVALUATION WITH WIKIPEDIA
This section explains the introduced CI-centered SECO

and design elements with Wikipedia as example use case.
Wikipedia disrupted the encyclopedia business by introduc-
ing the wiki concept and providing a free online encyclope-
dia platform, where articles are created, written and edited
by volunteers. This changed the way of knowledge aggre-
gation as since up to that time encyclopedias were exclu-
sively edited and sold by private publishing companies and
their articles were written and reviewed by a selected group
of subject experts and publisher employees. Table 1 maps
Wikipedia elements to the design elements identified in the
previous section and the following paragraphs highlights its
SECO characteristics based on figure 2.

1. Wikipedia’s stigmergy cycle (L1) is located between the
actor base (e) and the artifact network (c) enabling the ag-
gregation of contributions from volunteer actors.

2. Openness to 3rd-party developers who provide apps and
services on top of the aggregated data. Wikipedia increases
its stickiness by providing database dumps of its articles free
of charge, so many applications and services are able to rely
on Wikipedia’s data to increase their product value, thus
improving indirectly the outreach of Wikipedia’s actor con-
tributions.

3. The MediaWiki platform provides users with a free so-
lution for running their own wiki system. MediaWiki has
become one of the leading platforms in self-hosted wiki sys-
tems and has generated an extension6 market on its own.

4. Wikipedia has acted as lead platform around which the
Wikimedia software ecosystem has evolved, which includes
the platforms: Wiktionary, Wikiquote, Wikibooks, Wik-
isource, Wikispecies, Wikinews, Wikivoyage, Wikimedia Com-
mons and Wikidata. Therefore a key function of Wikipedia
is also the cross-pollination of adjacent Wikimedia platforms
as well as enhancing its own artifacts with contributions
from these systems.

6. CONCLUSIONS & FUTURE WORK
In this paper we discussed software ecosystems in the

CI domain and highlighted mechanisms for self-organization
and process control as important elements of a CI-centered
SECO’s self-regulation capabilities. The example of
Wikipedia has illustrated that blending together a SECO
approach with a feedback loop-centered perspective like the
SIS model has the potential to provide a wider and more
detailed viewpoint of the system.

Future research will focus on the design and analysis of
software service platforms for CI. Next steps include (1) con-
ducting a comprehensive survey of existing CI systems and
their characteristic features as well as (2) interviews with
domain experts to discuss and refine the CI-centered SECO
and SIS model. (3) Also it is planned to extend the design
elements with CI-specific quality attributes and a measure-
ment framework to support a quality-assured architecture
design process. The investigation of domain-specific SECOs,
like CI-centered SECOs, is promising since it deepens the
understanding of the differences between generic and specific
SECO features, thus providing better strategic guidance for
architects of the next generation of software ecosystems.

7. ACKNOWLEDGMENTS
This work has been supported by the Christian Doppler

Forschungsgesellschaft and the BMWFJ, Austria.

8. REFERENCES
[1] L. V. Ahn. Human Computation. PhD thesis,

Carnegie Mellon University, Pittsburgh, Dec. 2005.

[2] M. A. Bedau and P. Humphreys. Emergence:
Contemporary Readings in Philosophy and Science.
MIT Press, 2007.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford University Press, 1999.

[4] J. Bosch. From Software Product Lines to Software
Ecosystems. In Proc. of the 13th Int’l Software

6http://www.mediawiki.org/wiki/Manual:Extensions

Product Line Conference (SPLC ’09), pages 111–119.
Carnegie Mellon University, 2009.

[5] J. Bosch and P. Bosch-Sijtsema. From integration to
composition: On the impact of software product lines,
global development and ecosystems. Journal of
Systems and Software, 83(1):67–76, Jan. 2010.

[6] Y. Brun, G. Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw.
Engineering Self-Adaptive Systems through Feedback
Loops. In Software Engineering for Self-Adaptive
Systems, pages 48–70. Springer, 2009.

[7] H. Chesbrough. Open Service Innovation. Jossey-Bass,
2011.

[8] A. Gawer and M. Cusumano. Platform Leadership:
How Intel, Microsoft, and Cisco Drive Industry
Innovation. Harvard Business School Press, 2002.

[9] G. K. Hanssen and T. Dyba. Theoretical foundations
of software ecosystems. In Proc. of the 4th Int’l
Workshop on Software Ecosystems (IWSECO ’12),
pages 6–17. CEUR-WS, 2012.

[10] F. Heylighen. Collective Intelligence and its
Implementation on the Web : Algorithms to Develop a
Collective Mental Map. Computational &
Mathematical Organization Theory, 5(3):253–280, Oct.
1999.

[11] J. Howe. Crowdsourcing: A Definition, 2006.
Available:
http://www.crowdsourcing.com/cs/2006/06/
crowdsourcing a.html (last visited 05/08/2013).

[12] S. Jansen and M. Cusumano. Defining Software
Ecosystems: A Survey of Software Platforms and
Business Network Governance. In Proc. of the 4th Int’l
Workshop on Software Ecosystems (IWSECO ’12),
pages 41–58. CEUR-WS, 2012.

[13] M. L. Katz and C. Shapiro. Network externalities,
competition, and compatibility. The American
economic review, 75(3):424–440, 1985.

[14] H.-B. Kittlaus and P. N. Clough. Software Product
Management and Pricing: Key Success Factors for
Software Organizations. Springer, 2009.

[15] T. W. Malone, R. Laubacher, and C. Dellarocas.
Harnessing Crowds : Mapping the Genome of
Collective Intelligence. Working paper no. 2009-001,
MIT Center for Collective Intelligence, Feb. 2009.

[16] J. Musil, A. Musil, D. Winkler, and S. Biffl. A First
Account on Stigmergic Information Systems and Their
Impact on Platform Development. In Proc. of the
WICSA/ECSA 2012 Companion Volume
(WICSA/ECSA ’12), pages 69–73. ACM, 2012.

[17] A. J. Quinn and B. B. Bederson. Human
Computation: A Survey and Taxonomy of a Growing
Field. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11), pages
1403–1412. ACM, 2011.

[18] H. Van Dyke Parunak. A Survey of Environments and
Mechanisms for Human-Human Stigmergy. In Proc. of
the 2nd Int’l Conference on Environments for
Multi-Agent Systems (E4MAS ’05), number 2005,
pages 163–186. Springer-Verlag, 2006.

[19] M. van Steen. Graph Theory and Complex Networks:
An Introduction. Maarten von Steen, 2010.

