Background

During the design of software systems, a variety of models are created in the process of transforming the requirements and/or specification of the desired system into the corresponding software. These models include Extended Entity Relationship (EER) diagrams or UML model variants for designing databases and software system structures and behavior. The tasks of creating such models from software specifications and their subsequent verification to ensure their quality, i.e., through software model inspection [1], are cognitively intense tasks, that require significant time and effort investment from software engineers.

![Figure 1: Crowdsourcing-based Software Inspection (CSI) process](image)

To address this issue, we defined and introduced a novel Crowdsourcing-based Software Inspection (CSI) process, previously described in [1,2,3] and shown in Figure 1. A key element of the CSI process is the concept of Expected Model Element (EME). EMEs represent the main building blocks of software engineering models and include entities, attributes, and relationships, that are present in system requirements specifications (i.e., reference documents) and need to be modeled in the corresponding software model, e.g., in an EER diagram. The identification of the EMSs is currently achieved through crowdsourcing in the Text Analysis phase of the CSI process, however, this approach has several limitations in terms of being too time-consuming and resulting into EME suggestions that are challenging to combine.

Tasks

The key task is to provide methods for the semi-automatic identification of Model Elements in a textual system specification documentation. The work should
investigate the optimal mix of approaches based on natural language processing (NLP), crowdsourcing and expertsourcing. The GATE NLP infrastructure will be used to process the textual document and crowd-or expertsourcing will be implemented with the Crowdflower framework.

Experience and skills needed
The following preconditions are recommended, but could also be learned during the thesis itself.

- Java programming
- Crowdsourcing (CrowdFlower)
- Natural language processing (GATE framework)
- Software engineering
- Defect detection in software engineering models

References

